915 resultados para Logistic regression model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objective: To examine if commonly recommended assumptions for multivariable logistic regression are addressed in two major epidemiological journals. Methods: Ninety-nine articles from the Journal of Clinical Epidemiology and the American Journal of Epidemiology were surveyed for 10 criteria: six dealing with computation and four with reporting multivariable logistic regression results. Results: Three of the 10 criteria were addressed in 50% or more of the articles. Statistical significance testing or confidence intervals were reported in all articles. Methods for selecting independent variables were described in 82%, and specific procedures used to generate the models were discussed in 65%. Fewer than 50% of the articles indicated if interactions were tested or met the recommended events per independent variable ratio of 10: 1. Fewer than 20% of the articles described conformity to a linear gradient, examined collinearity, reported information on validation procedures, goodness-of-fit, discrimination statistics, or provided complete information on variable coding. There was no significant difference (P >.05) in the proportion of articles meeting the criteria across the two journals. Conclusion: Articles reviewed frequently did not report commonly recommended assumptions for using multivariable logistic regression. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62J12, 62K15, 91B42, 62H99.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 68T50,62H30,62J05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 62P10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses self-efficacy to predict the success of women in introductory physics. We show how sequential logistic regression demonstrates the predictive ability of self-efficacy, and reveals variations with type of physics course. Also discussed are the sources of self-efficacy that have the largest impact on predictive ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple linear regression model plays a key role in statistical inference and it has extensive applications in business, environmental, physical and social sciences. Multicollinearity has been a considerable problem in multiple regression analysis. When the regressor variables are multicollinear, it becomes difficult to make precise statistical inferences about the regression coefficients. There are some statistical methods that can be used, which are discussed in this thesis are ridge regression, Liu, two parameter biased and LASSO estimators. Firstly, an analytical comparison on the basis of risk was made among ridge, Liu and LASSO estimators under orthonormal regression model. I found that LASSO dominates least squares, ridge and Liu estimators over a significant portion of the parameter space for large dimension. Secondly, a simulation study was conducted to compare performance of ridge, Liu and two parameter biased estimator by their mean squared error criterion. I found that two parameter biased estimator performs better than its corresponding ridge regression estimator. Overall, Liu estimator performs better than both ridge and two parameter biased estimator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Wives of pathological gamblers tend to endure long marriages despite financial and emotional burden. Difficulties in social adjustment, personality psychopathology, and comorbidity with psychiatric disorders are pointed as reasons for remaining on such overwhelming relationships. The goal was to examine the social adjustment, personality and negative emotionality of wives of pathological gamblers. Method: The sample consisted of 25 wives of pathological gamblers, mean age 40.6, SD = 9.1 from a Gambling Outpatient Unit and at GAM-ANON, and 25 wives of non-gamblers, mean age 40.8, SD = 9.1, who answered advertisements placed at the Universidade de São Paulo hospital and medical school complex. They were selected in order to approximately match demographic characteristics of the wives of pathological gamblers. Subjects were assessed by the Social Adjustment Scale, Temperament and Character Inventory, Beck Depression Inventory and State-Trait Anxiety Inventory. Results: Three variables remained in the final Multiple Logistic Regression model, wives of pathological gamblers presented greater dissatisfaction with their marital bond, and higher scores on Reward Dependence and Persistence temperament factors. Both, Wives of pathological gamblers and wives of non-gamblers presented well-structured character factors excluding personality disorders. Conclusion: This personality profile may explain wives of pathological gamblers emotional resilience and their marriage longevity. Co-dependence and other labels previously used to describe them may work as a double edged sword, legitimating wives of pathological gamblers problems, while stigmatizing them as inapt and needy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Analisar as características das quedas no grupo etário com 60 anos ou mais, com ênfase nas quedas no mesmo nível, residentes no Estado de São Paulo, a partir da análise das diferentes fontes de informação oficiais. MÉTODOS: Foram analisadas as 1.328 mortes registradas no SIM em 2007, 20.726 internações no SIH/SUS em 2008 e os 359 atendimentos realizados em 24 UEs do Estado de São Paulo em 2007. Um teste de regressão logística foi utilizado para testar associações entre variáveis nos atendimentos em emergências. RESULTADOS: O sexo masculino preponderou nas mortes (51,2 %) enquanto o sexo feminino preponderou nas internações (61,1%) e atendimentos em emergências (60,4%). O coeficiente de mortalidade foi 31/100.000 habitantes, aumentando com a idade e atingindo o valor de 110,7/100.000 habitantes na faixa de 80 anos e mais. As quedas no mesmo nível foram responsáveis pela maior proporção de mortes definidas (35%), nas internações (47,5%) e também nas emergências (66%), crescendo de importância com o aumento das faixas etárias. A residência foi o local de ocorrência em 65,8% dos casos atendidos nas emergências. Os traumatismos de cabeça assumem importância nas mortes; as fraturas de fêmur foram as lesões mais frequentes nas internações e emergências. Nas emergências, as mulheres foram 1,55 vezes significativamente mais prováveis de serem atendidas por uma queda do que pelas outras causas externas que os homens. Comparativamente à faixa de 60 a 69 anos, os indivíduos na faixa de 70 a 79 anos foram 2,10 vezes e os indivíduos de 80 anos e mais foram 2,26 vezes significativamente mais prováveis de serem atendidos por uma queda do que pelas outras causas externas. Não houve diferença estatisticamente significante quanto ao sexo ou faixa etária quando se comparou os indivíduos que sofreram quedas no mesmo nível e outros tipos de queda. CONCLUSÃO: Recomenda-se que a prevenção das quedas entre idosos entre na pauta de discussão das políticas públicas sem mais demora.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prevalence of severe food insecurity was estimated for Brazilian municipalities based on the 2004 National Household Sample Survey (PNAD). First, a logistic regression model was developed and tested with this database. The model was then applied to the 2000 census data, generating severe food insecurity estimates for the Brazilian municipalities, which were subsequently analyzed according to the proportion of families exposed to severe food insecurity. Severe food insecurity was mainly concentrated in the North and Northeast regions, where 46.1% and 65.3% of municipalities showed high prevalence of severe food insecurity, respectively. Most municipalities in the Central West region showed intermediate prevalence of severe food insecurity. There was wide intra-regional variation in severe food insecurity, while the South of Brazil showed the most uniform distribution. In conclusion, Brazil displays wide inter and intra-regional variations in the occurrence of severe food insecurity. Such variations should be identified and analyzed in order to plan appropriate public policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Investigar a prevalência de consumo de alimentos complementares e os fatores associados à alimentação complementar oportuna em menores de um ano. MÉTODOS: Participaram do estudo 1 176 crianças, durante a Campanha Nacional de Vacinação de 2003, em São Bernardo do Campo (SP), cujos acompanhantes responderam questionário que incluiu questões sobre a alimentação da criança nas 24 horas precedentes. A estimativa da prevalência de consumo dos alimentos complementares foi realizada por um modelo de regressão logística ajustado por idade; as medianas de introdução de alimentos por análise de sobrevida e os fatores associados à alimentação complementar oportuna por regressão de Poisson com ajuste robusto de variância e seleção hierarquizada de variáveis. RESULTADOS: Observou-se introdução precoce de alimentos complementares: no quarto mês, cerca de um terço das crianças recebiam suco de fruta e um quarto das crianças recebiam mingau, fruta ou sopa, ao passo que a probabilidade de consumir a comida da família aos oito meses foi baixa (48%). A mediana de idade para o consumo de frutas foi de 266 dias (IC95% 256-275), de papa de legumes foi 258 dias (IC95% 250-264) e comida da família, 292 dias (IC 95% 287-303). Os fatores associados ao consumo de alimentos sólidos antes dos seis meses de idade foram: sistema de assistência à saúde; idade materna; trabalho materno e uso de chupeta. CONCLUSÃO: O consumo precoce de alimentos sólidos, um risco potencial para a saúde infantil e para o desenvolvimento de doenças crônicas na idade adulta, evidenciam a necessidade de ações programáticas para reversão deste quadro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: analisar a insegurança alimentar e o vínculo inadequado mãe-filho como dois potenciais determinantes da desnutrição em crianças de quatro a seis anos de idade. MÉTODOS: estudo de caso-controle desenvolvido em Escolas Municipais de Educação Infantil (EMEIs) no Jardim Jaqueline, área de alta vulnerabilidade social do município de São Paulo, Brasil. Foram aplicados a Escala Brasileira de Insegurança Alimentar e o Protocolo de Avaliação do Vínculo Mãe-filho, além de coletadas informações biológicas e socio-econômicas. Para verificação dos efeitos de cada variável independente e controle dos efeitos das demais variáveis incluídas no modelo, foi utilizado o modelo de regressão logística múltipla. RESULTADOS: verificou-se que tanto a insegurança alimentar familiar (OR=3,6) como o vínculo inadequado mãe-filho (OR=9,4) estiveram associados com a desnutrição infantil (p<0,05), mesmo após o controle para o peso ao nascimento da criança e idade, estado conjugal e trabalho maternos. CONCLUSÕES: tanto a insegurança alimentar familiar (OR=3,6) como o vínculo mãe-filho inadequado (OR=9,4) mostraram-se fatores determinantes da ocorrência da desnutrição na população estudada.