867 resultados para Liquid metal fast breeder reactors
Resumo:
Isotopic fractionation due to sputtering has been investigated via a collector type experiment in which targets of known isotopic composition have been bombarded with several keV Ar+ and Xe+ ions with fluences down to 3.0x1014 ions/cm2 , believed to be the lowest fluences for which such detailed measurements have ever been made. The isotopes were sputtered onto carbon collectors and analyzed with Secondary Ion Mass Spectroscopy (SIMS.) There is clear indication of preferential effects several times that predicted by the dominant analytical theory. Results also show a fairly strong angular variation in the fractionation. The maximum effect is usually seen in the near normal direction, measured from the target surface, falling continuously, by a few percent in some cases, to a minimum in the oblique direction. Measurements have been made using Mo isotopes: 100Mo and 92Mo and a liquid metal system of In:Ga eutectic. The light isotope of Mo is found to suffer a 53 ± 5‰ (note: 1.0‰ ≡ 0.1%) enrichment in the sputtered flux in the near normal direction, compared to the steady state near normal sputtered composition, under 5.0 keV Xe+ bombardment of 3.0 x 1014 ions/cm2. In the liquid metal study only the angular dependence of the fractionation could be measured due to the lack of a well defined reference and the nature of the liquid surface, which is able to 'repair' itself during the course of a bombardment. The results show that 113In is preferentially sputtered over 115In in the near normal direction by about 8.7 ± 2.7‰ compared to the oblique direction. 69Ga, on the other hand, is sputtered preferentially over 71Ga in the oblique direction by about 13 ± 4.4‰ with respect to the near normal direction.
Resumo:
Com o passar do tempo, a população mundial vem se conscientizando mais sobre problemas ambientais. Isso fez surgir uma demanda por tecnologias novas que possam se encaixar no cenário de sustentabilidade. Instabilidades frequentes no cenário político-econômico global acabam por elevar o preço do barril do petróleo. Assim a indústria química começa a buscar por alternativas que tenham a mesma versatilidade do petróleo. Dentre as opções de combustíveis renováveis, destaca-se o bio-óleo de pirólise. Seu interesse em estudos científicos vem do fato de poder-se utilizar do rejeito de processos como matéria prima, não necessitando competir por espaço com a plantação de alimentos. Sua composição pode ser representada por ácidos e fenóis. Em especial destacamos o ácido acético e fenóis oxigenados como m-cresol, o-cresol, p-cresol e guaiacol por estarem presentes em grandes quantidades. Sua separação das frações menos polares do bio-óleo pode ser realizada por meio de extração com água que é um reagente abundante e de baixo custo. O conhecimento das propriedades desses componentes puros é amplamente disponível na literatura, porém dados de composições das fases corrosivas, como misturas ternárias de água-ácido acético-m-cresol/o-cresol/p-cresol/guaiacol nas temperaturas de (298,15, 310,65 e 323,15) K são escassos. Devido a isso, o uso de modelos termodinâmicos para simulação do comportamento desses sistemas torna-se interessante. Todavia, quando são testadas as capacidades dos modelos clássicos, como o UNIFAC e NRTL, percebe-se que os mesmos não conseguem reproduzir o comportamento da binodal dos componentes corrosivos. Sendo assim, essa dissertação investigou soluções para melhorar a descrição desses sistemas, assim como obteve dados experimentais para tais sistemas de misturas ternárias de água-ácido acético-m-cresol/o-cresol/p-cresol/guaiacol nas temperaturas de (298,15, 310,65 e 323,15) K; desenvolveu-se uma metodologia para estimar parâmetros do modelo NRTL a partir de dados de composição da binodal e verificou-se a possibilidade de utilizar o modelo UNIFAC para prever o comportamento de equilíbrio de fases. Como resultado foram obtidos 314 novos dados experimentais, obtiveram-se parâmetros para o modelo NRTL que conseguem reproduzir com acurácia a forma da binodal com a metodologia proposta e verificou-se a necessidade de aperfeiçoamento no estudo do modelo UNIFAC para otimizar sua utilização na previsão do comportamento dos sistemas estudados
Resumo:
Targets to cut 2050 CO2 emissions in the steel and aluminium sectors by 50%, whilst demand is expected to double, cannot be met by energy efficiency measures alone, so options that reduce total demand for liquid metal production must also be considered. Such reductions could occur through reduced demand for final goods (for instance by life extension), reduced demand for material use in each product (for instance by lightweight design) or reduced demand for material to make existing products. The last option, improving the yield of manufacturing processes from liquid metal to final product, is attractive in being invisible to the final customer, but has had little attention to date. Accordingly this paper aims to provide an estimate of the potential to make existing products with less liquid metal production. Yield ratios have been measured for five case study products, through a series of detailed factory visits, along each supply chain. The results of these studies, presented on graphs of cumulative energy against yield, demonstrate how the embodied energy in final products may be up to 15 times greater than the energy required to make liquid metal, due to yield losses. A top-down evaluation of the global flows of steel and aluminium showed that 26% of liquid steel and 41% of liquid aluminium produced does not make it into final products, but is diverted as process scrap and recycled. Reducing scrap substitutes production by recycling and could reduce total energy use by 17% and 6% and total CO 2 emissions by 16% and 7% for the steel and aluminium industries respectively, using forming and fabrication energy values from the case studies. The abatement potential of process scrap elimination is similar in magnitude to worldwide implementation of best available standards of energy efficiency and demonstrates how decreasing the recycled content may sometimes result in emission reductions. Evidence from the case studies suggests that whilst most companies are aware of their own yield ratios, few, if any, are fully aware of cumulative losses along their whole supply chain. Addressing yield losses requires this awareness to motivate collaborative approaches to improvement. © 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the effects of design parameters, such as cladding and coolant material choices, and operational phenomena, such as creep and fission product decay heat, on the tolerance of Accelerator Driven Subcritical Reactor (ADSR) fuel pin cladding to beam interruptions. This work aims to provide a greater understanding of the integration between accelerator and nuclear reactor technologies in ADSRs. The results show that an upper limit on cladding operating temperature of 550 °C is appropriate, as higher values of temperature tend to accelerate creep, leading to cladding failure much sooner than anticipated. The effect of fission product decay heat is to reduce significantly the maximum stress developed in the cladding during a beam-trip-induced transient. The potential impact of irradiation damage and the effects of the liquid metal coolant environment on the cladding are discussed. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
DYN3D reactor dynamics nodal diffusion code was originally developed for the analysis of Light Water Reactors. In this paper, we demonstrate the feasibility of using DYN3D for modeling of fast spectrum reactors. A homogenized cross sections data library was generated using continuous energy Monte-Carlo code Serpent which provides significant modeling flexibility compared with traditional deterministic lattice transport codes and tolerable execution time. A representative sodium cooled fast reactor core was modeled with the Serpent-DYN3D code sequence and the results were compared with those produced by ERANOS code and with a 3D full core Monte-Carlo solution. Very good agreement between the codes was observed for the core integral parameters and power distribution suggesting that the DYN3D code with cross section library generated using Serpent can be reliably used for the analysis of fast reactors. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Production of steel and aluminium creates 10% of global carbon emissions from energy and processes. Demand is likely to double by 2050, but climate scientists are recommending absolute reductions of at least 50% and these are Increasingly entering law. How can reductions of this order happen? Only 10-20% savings can be expected in liquid metal production, so the primary industry is pursuing carbon sequestration as the main solution. However, this Is as yet unproven at scale, and as well as carrying some risk, the capital and operating costs are likely to be high, but are as yet unknown. In parallel with these strategies we can also examine whether we can reduce demand for liquid metal. 'Material efficiency' may allow delivery of existing services with less requirement for metal, for instance through designing products that use less metal, reducing process scrap, diverting scrap for other use, re-using components or delaying end of life. Overall demand reduction could occur if goods were used more intensely, alternative means were used to deliver the same services, or total demand were constrained. The paper analyses all possible options, to define and evaluate scenarios that meet the 2050 target, and discuss the steps required to bring them about. The paper concludes with suggestions for key areas where future research In metal forming can support a future low carbon economy. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.
Resumo:
In this work, the formation and characterization of nano-sized grains on the modified surfaces of GCr15 and H13 steels have been investigated. The material was processed by pulsed laser surface melting (LSM) under different depths of de-ionized water. The microstructures and phases of the melted zones were examined by x-ray diffraction, environmental field emission scanning electron microscopy and high resolution transmission electron microscopy. The results indicate that LSM under water can successfully fabricate nano-scaled grains on the surfaces of steel, due to the rapid solidification and crystallization by heterogeneous nucleation. The elemental segregation of chromium and activated heterogeneous nucleation mechanism of austenite in liquid metal play a key role in the formation of nano-sized grains at high cooling rates. This one-step technique provides us a new way to prepare uniform nano-scaled grains, and is of great importance for further understanding the growth of nano-materials under extreme conditions.
Resumo:
Different industrial induction melting processes involve free surface and melt-solid interface of the liquid metal subject to dynamic change during the technological operation. Simulation of the liquid metal dynamics requires to solve the non-linear, coupled hydrodynamic-electromagnetic-heat transfer problem accounting for the time development of the liquid metal free boundary with a suitable turbulent viscosity model. The present paper describes a numerical solution method applicable for various axisymmetric induction melting processes, such as, crucible with free top surface, levitation, semi-levitation, cold crucible and similar melting techniques. The presented results in the cases of semi-levitation and crucible with free top surface meltings demonstrate oscillating transient behaviour of the free metal surface indicating the presence of gravity-inertial-electromagnetic waves which are coupled to the internal fluid flow generated by both the rotational and potential parts of the electromagnetic force.
Resumo:
In this paper a computer simulation tool capable of modelling multi-physics processes in complex geometry has been developed and applied to the casting process. The quest for high-quality complex casting components demanded by the aerospace and automobile industries, requires more precise numerical modelling techniques and one that need to be generic and modular in its approach to modelling multi-processes problems. For such a computer model to be successful in shape casting, the complete casting process needs to be addressed, the major events being:-• Filling of hot liquid metal into a cavity mould • Solidification and latent heat evolution of liquid metal • Convection currents generated in liquid metal by thermal gradients • Deformation of cast and stress development in solidified metal • Macroscopic porosity formation The above phenomena combines the analysis of fluid flow, heat transfer, change of phase and thermal stress development. None of these events can be treated in isolation as they inexorably interact with each other in a complex way. Also conditions such as design of running system, location of feeders and chills, moulding materials and types of boundary conditions can all affect on the final cast quality and must be appropriately represented in the model.
Resumo:
An electrolytic cell for Aluminum production contains molten metal subject to high currents and magnetic flux density. The interaction between these two fields creates electromagnetic forces within the liquid metal and can generate oscillations of the fluid similar to the waves at the free surface of oceans and rivers. The study of this phenomenon requires the simulation of the current density field, of the magnetic flux density field and the solution of the equations of motion of the liquid mass. An attempt to analyze the dynamical behavior of this problem is made by coupling different codes, based on different numerical techniques, in a single tool. The simulations are presented and discussed.
Resumo:
This work is concerned with the accurate computation of flow in a rapidly deforming liquid metal droplet, suspended in an AC magnetic field. Intense flow motion due to the induced electromagnetic force distorts dynamically the droplet envelope, which is initially spherical. The relative positional change between the liquid metal surface and the surrounding coil means that fluid flow and magnetic field computations need to be closely coupled. A spectral technique is used to solve this problem, which is assumed axisymmetric. The computed results are compared against a physical experiment and "ideal sphere" analytic solutions. A comparison between the "magnetic pressure" approximation and the full electromagnetic force solutions, shows fundamental differences; the full electromagnetic force solution is necessary for accurate results in most practical applications of this technique. The physical reason for the fundamental discrepancy is the difference in the electromagnetic force representation: only the gradient part of the full force is accounted for in the "magnetic pressure" approximation. Figs 9, Refs 13.
Resumo:
We present practical modelling techniques for electromagnetically agitated liquid metal flows involving dynamic change of the fluid volume and shape during melting and the free surface oscillation. Typically the electromagnetic field is strongly coupled to the free surface dynamics and the heat-mass transfer. Accurate pseudo-spectral code and the k-omega turbulence model modified for complex and transitional flows with free surfaces are used for these simulations. The considered examples include magnetic suspension melting, induction scull remelting (cold crucible), levitation and aluminium electrolysis cells. The process control and the energy savings issues are analysed.
Resumo:
This work presents computation analysis of levitated liquid thermal and flow fields with free surface oscillations in AC and DC magnetic fields. The volume electromagnetic force distribution is continuously updated with the shape and position change. The oscillation frequency spectra are analysed for droplets levitation against gravity in AC and DC magnetic fields at various combinations. For larger volume liquid metal confinement and melting the semi-levitation induction skull melting process is simulated with the same numerical model. Applications are aimed at pure electromagnetic material processing techniques and the material properties measurements in uncontaminated conditions.
Resumo:
Induction Skull Melting (ISM) is a technique for heating, melting, mixing and, possibly, evaporating reactive liquid metals at high temperatures with a minimum contact at solid walls. The presented numerical modelling involves the complete time dependent process analysis based on the coupled electromagnetic, temperature and turbulent velocity fields during the melting and liquid shape changes. The simulation model is validated against measurements of liquid metal height, temperature and heat losses in a commercial size ISM furnace. The observed typical limiting temperature plateau for increasing input electrical power is explained by the turbulent convective heat losses. Various methods to increase the superheat within the liquid melt, the process energy efficiency and stability are proposed.