159 resultados para Lipoxygenase
Resumo:
Background: Eicosanoids are biologically active, oxygenated metabolites of three C20 polyunsaturated fatty acids. They act as signalling molecules within the autocrine or paracrine system in both vertebrates and invertebrates mainly functioning as important mediators in reproduction, the immune system and ion transport. The biosynthesis of eicosanoids has been intensively studied in mammals and it is known that they are synthesised from the fatty acid, arachidonic acid, through either the cyclooxygenase (COX) pathway; the lipoxygenase (LOX) pathway; or the cytochrome P450 epoxygenase pathway. However, little is still known about the synthesis and structure of the pathway in invertebrates. Results: Here, we show transcriptomic evidence from Daphnia magna (Crustacea: Branchiopoda) together with a bioinformatic analysis of the D. pulex genome providing insight on the role of eicosanoids in these crustaceans as well as outlining a putative pathway of eicosanoid biosynthesis. Daphnia appear only to have one copy of the gene encoding the key enzyme COX, and phylogenetic analysis reveals that the predicted protein sequence of Daphnia COX clusters with other invertebrates. There is no current evidence of an epoxygenase pathway in Daphnia; however, LOX products are most certainly synthesised in daphnids. Conclusion: We have outlined the structure of eicosanoid biosynthesis in Daphnia, a key genus in freshwater ecosystems. Improved knowledge of the function and synthesis of eicosanoids in Daphnia and other invertebrates could have important implications for several areas within ecology. This provisional overview of daphnid eicosanoid biosynthesis provides a guide on where to focus future research activities in this area.
Resumo:
Chronic exposure of pancreatic beta-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to beta-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic beta-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to beta-cell incubations at 100 mu M, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Delta(3.5),Delta(2.4)-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P < 0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-kappa B (nuclear factor kappa B) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective beta-cell action, which may be beneficial to function and survival in the `lipotoxic` environment commonly associated with Type 2 diabetes mellitus.
Resumo:
Short chain fatty acids (SCFAs) are fermentation products of anaerobic bacteria. More than just being an important energy source for intestinal epithelial cells, these compounds are modulators of leukocyte function and potential targets for the development of new drugs. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate and butyrate) on production of nitric oxide (NO) and proinflammatory cytokines [tumor necrosis factor alpha (TNF-alpha) and cytokine-induced neutrophil chemoattractant-2 (CINC-2 alpha beta)] by rat neutrophils. The involvement of nuclear factor kappa B (NF-kappa B) and histone deacetylase (HDAC) was examined. The effect of butyrate was also investigated in vivo after oral administration of tributyrin (a pro-drug of butyrate). Propionate and butyrate diminished TNF-alpha, CINC-2 alpha beta and NO production by LPS-stimulated neutrophils. We also observed that these fatty acids inhibit HDAC activity and NF-kappa B activation, which might be involved in the attenuation of the LPS response. Products of cyclooxygenase and 5-lipoxygenase are not involved in the effects of SCFAs as indicated by the results obtained with the inhibitors of these enzymes. The recruitment of neutrophils to the peritonium after intraperitoneal administration of a glycogen solution (1%) and the ex vivo production of cytokines and NO by neutrophils were attenuated in rats that previously received tributyrin. These results argue that this triglyceride may be effective in the treatment of inflammatory conditions. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-delta (PKC delta) and PI3K but not PKC alpha and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.
Resumo:
The genus Saccharum belongs to Poaceae family. Sugarcane has become important monocultures in Brazil due to their products: ethanol and sugar. The production may change between different regions from Brazil. This difference is related to soil, climatic conditions and temperature that promotes oxidative stress that may induce an early flowering. The aim of this work was to identify the effects of oxidative stress. In order to analyse this, sugarcane plants were submitted to oxidative stress using hydrogen peroxide. After this treatment, the oxidative stress were analyzed Then, the plant responses were analyzed under different approaches, using morphophysiological, biochemical and molecular tools. Thus, sugarcane plants were grown under controlled conditions and until two months they were subjected first to a hydroponics condition for 24 hours in order to acclimation. After this period, these plants were submitted to oxidative stresse using 0 mM, 10 mM, 20 mM and 30 mM hydrogen peroxide during 8 hours. The histomorphometric analysis allowed us to verify that both root and leaf tissues had a structural changes as it was observed by the increased in cell volume, lignin accumulation in cell walls. Besides, this observation suggested that there was a change in redox balance. Also, it was analyzed the activity of the SOD, CAT and APX enzymes. It was observed an increase in the SOD activity in roots and it was also observed a lipid peroxidation in leaves and roots. Then, in order to identify proteins that were differently expressed in this conditions it was used the proteomic tool either by bidimensional gel or by direct sequencing using the Q-TOF EZI. The results obtained with this approach identified more than 3.000 proteins with the score ranging from 100-5000 ions. Some of the proteins identified were: light Harvesting; oxygenevolving; Thioredoxin; Ftsh-like protein Pftf precusor; Luminal-binding protein; 2 cys peroxiredoxin e Lipoxygenase. All these proteins are involved in oxidative stress response, photsynthetic pathways, and some were classified hypothetical proteins and/or unknown (30% of total). Thus, our data allows us to propose that this treatment induced an oxidative stress and the plant in response changed its physiological process, it made changes in tissue, changed the redox response in order to survival to this new condition
Resumo:
Studies show the great influence of free radicals and other oxidants as responsible for aging and degenerative diseases. On the other hand, the natural phenolic compounds has shown great as antioxidants to inhibit lipid peroxidation and lipoxygenase in vitro. Among these, is highlighted trans-resveratrol ( 3,5,4 `- trihydroxystilbene ) phenolic compound , characterized as a polyphenol stilbene class. The vegetables popularly known as "Azedinha" (Rumex Acetosa) has trans-resveratrol in its composition and from this, the present work aimed to study on the supercritical extraction and conventional extraction (Soxhlet and sequential) in roots of Rumex Acetosa, evaluating the efficiency of extractive processes, antioxidant activity, total phenolic content and quantification of trans-resveratrol contained in the extracts. Extractions using supercritical CO2 as solvent, addition of co-solvent (ethanol) and were conducted by the dynamic method in a fixed bed extractor. The trial met a 23 factorial design with three replications at the central point, with the variable reply process yield and concentration of trans-resveratrol and pressure as independent variables, temperature and concentration of co-solvent (% v/v). Yields ( mass of dry extract / mass of raw material used ) obtained from the supercritical extraction ranged from 0,8 to 7,63 % , and the best result was obtained at 250 bar and 90 °C using the co-solvent 15% ethanol (% v/v). The value was calculated for YCER a flow rate of 1,0 ± 0,17 g/min resulting in 0,0469 CO2 ( g solute / g solvent ). The results of the mass yield varied between conventional extractions 0,78 % ( hexane) and 9,97 % (ethanol). The statistical model generated from the data of the concentration of trans-resveratrol performed as meaningful and predictive for a 95% confidence. GC analysis on HPLC (High Performance Liquid Chromatography), transresveratrol was quantified in all extracts and concentration values ranged between 0,0033 and 0,42 ( mg / g extract) for supercritical extracts and between 0,449 and 17,046 (mg / g extract) to conventional extractions and therefore, the Soxhlet extraction with ethanol for more selective trans-resveratrol than the supercritical fluid. Evaluation of antioxidant (radical method to sequester 2,2- diphenyl-1- picryl - hydrazyl - DPPH) the supercritical extracts resulted in EC50 values (concentration effective to neutralize 50% of free radicals) of between 7,89 and 18,43 mg/mL , while resulting in a Soxhlet extraction with EC50 values in the range of 6,05 and 7,39 mg/mL. As for quantification of the phenolic compounds (Method Spectrophotometer Folin-Ciocalteau) the supercritical extracts resulted in values between 85,3 and 194,79 mg GAE / g extract, whereas values derived from the Soxhlet extract resulted in values between 178,5 and 237,8 mg GAE / g extract. The high antioxidant activity can not be attributed solely to the presence of phenolic compounds, but the presence of other antioxidants in the existing Rumex acetosa
Resumo:
Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, the most prevalent deep mycosis in Latin America. Production of eicosanoids, including prostaglandins and leukotrienes, during fungal infections is theorized to play a critical role on fungal survival and/or growth as well as on host immune response modulation. Host cells are one source of these mediators; however another potential source may be the fungus itself. The purpose of our study was to assess whether P. brasiliensis strains with different degree of virulence (Pb18, Pb265, PbBT79, Pb192) produce both, prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)). Moreover, we asked if P. brasiliensis can use exogenous sources of arachidonic acid (AA), as well as metabolic pathways dependent on cyclooxygenase (COX) and lipoxygenase (5-LO) enzymes, for PGE(2) and LTB(4) production, respectively. Finally, a possible association between these eicosanoids and fungus viability was assessed. We demonstrated, using ELISA assays, that all P. brasiliensis strains, independently of their virulence, produce high PGE(2) and LTB(4) levels after a 4-hour culture, which were reduced after 8 hours. However, in both culture times, higher eicosanoids levels were detected when culture medium was supplemented with exogenous AA. Differently, treatment with indomethacin, a COX inhibitor, or MK886, a 5-LO inhibitor, induces a reduction on PGE(2) and LTB(4) levels, respectively, as well as in fungus viability. The data provide evidence that P. brasiliensis is able to metabolize either endogenous or exogenous AA by pathways that depend on COX and 5-LO enzymes for producing, respectively, PGE(2) and LTB(4) that are critical for its viability.
Resumo:
Subcutaneous heat-coagulated egg white implants (EWI) induce chronic, intense local eosinophilia in mice, followed by asthma-like responses to airway ovalbumin challenge. Our goal was to define the mechanisms of selective eosinophil accumulation in the EWI model. EWI carriers were challenged i.p. with ovalbumin and the contributions of cellular immunity and inflammatory mediators to the resulting leukocyte accumulation were defined through cell transfer and pharmacological inhibition protocols. Eosinophil recruitment required Major Histocompatibility Complex Class It expression, and was abolished by the leukotriene B4 (LTB4) receptor antagonist CP 105.696, the 5-lipoxygenase inhibitor BWA4C and the 5-lipoxygenase activating protein inhibitor MK886. Eosinophil recruitment in EWI carriers followed transfer of: a) CD4(+) (but not CD4(-)) cells, harvested from EWI donors and restimulated ex vivo; b) their cell-free supernatants, containing LTB4. Restimulation in the presence of MK886 was ineffective. CC chemokine receptor ligand (CCL)5 and CCL2 were induced by ovalbumin challenge in vivo. mRNA for CCL17 and CCL11 was induced in ovalbumin-restimulated CD4(+) cells ex vivo. MK886 blocked induction of CCL17 Pretreatment of EWI carriers with MK886 eliminated the effectiveness of exogenously administered CCL11, CCL2 and CCL5. In conclusion, chemokine-producing, ovalburnin-restimulated CD4(+) cells initiate eosinophil recruitment which is strictly dependent on LTB4 production. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The mechanism of doxorubicin-induced cardiotoxicity remains controversial. Wistar rats (n=96) were randomly assigned to a control (C), lycopene (L), doxorubicin (D), or doxorubicin+lycopene (DL) group. The L and DL groups received lycopene (5 mg/kg body wt/day by gavage) for 7 weeks. The D and DL groups received doxombicin (4 mg/kg body wt intraperitoneally) at 3, 4, 5, and 6 weeks and were killed at 7 weeks for analyses. Myocardial tissue lycopene levels and total antioxidant performance (TAP) were analyzed by HPLC and fluorometry, respectively. Lycopene metabolism was determined by incubating H-2(10)-lycopene with intestinal mucosa postmitochondrial fraction and lipoxygenase and analyzed with HPLC and APCI mass spectroscopy. Myocardial tissue lycopene levels in DL and L were similar. TAP adjusted for tissue protein were higher in myocardium of D than those of C (P=0.002). Lycopene metabolism study identified a lower oxidative cleavage of lycopene in D as compared to those of C. Our results showed that lycopene was not depleted in myocardium of lycopene-supplemented rats treated with doxorubicin and that higher antioxidant capacity in myocardium and less oxidative cleavage of lycopene in intestinal mucosa of doxorubicin-treated rats suggest an antioxidant role of doxombicin rather than acting as a prooxidant. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effects of the arachidonic acid metabolism inhibitors on the acetylcholine responses of aortae from control (CR) and deoxycorticosterone acetate (DOCA)-salt hypertensive (HR) rats were investigated. The acetylcholine decreased response observed in HR [relaxation (%): CR 95.5 +/- 2.7, n = 4; HR 52.0 +/- 6.3, n = 5, p < 0.05] was restored by the cyclooxygenase inhibitor piroxicam [relaxation (%): CR 99.8 +/- 0.2, n = 4; HR 86.0 +/- 4.0, n = 5] and by the thromboxane synthetase inhibitor and the thrombox ane A(2)/prostaglandin H-2 receptor antagonist ridogrel [relaxation (%): CR 92.1 +/- 4.4, n = 7; HR 93.1 +/- 2.0, n = 7] but not by the inhibitors of thromboxane synthetase, prostacyclin synthetase, cytochrome P-450 monooxygenase, and lipoxygenase. So, endoperoxide intermediates seem to be involved in the decreased endothelium-dependent relaxation to acetylcholine in DOCA-salt hypertension. (C) 1999 Elsevier B.V. All rights reserved.
Resumo:
Histamine release from guinea pig heart treated with compound 48/80 was potentiated by the cyclooxygenase inhibitors indomethacin and piroxicam but not by aspirin or phenylbutazone. This differential effect suggests that the potentiation is not merely due to an inhibition of prostaglandin synthesis. Piroxicam potentiated the histamine release induced by cardiac anaphylaxis whereas indomethacin reduced this effect. The SRS-A antagonist FPL 55712 inhibited histamine release induced by cardiac anaphylaxis, but not that evoked by compound 48/80, and also prevented the potentiation due to indomethacin and piroxicam. In total, these data suggest that the potentiation of histamine release by piroxicam and indomethacin is probably due to a diversion of arachidonic acid metabolism from the cyclooxygenase to the lipoxygenase pathways. The resulting lipoxygenase products may then regulate histamine release, with the secretion due to antigen being more sensitive to such modulation than that evoked by compound 48/80.
Resumo:
The case of a patient with ulcerative colitis and isolated sacro-ileitis is presented. She suffered reactivation of the intestinal disease with diclofenac. The patient was allergic to sulfasalazine and was using fish oil fatty acid. The possible mechanisms of reactivation of the inflammatory bowel disease with non-steroidal anti-inflammatory drugs are discussed. It is suggested when necessary the utilization of non-steroidal anti-inflammatory drugs that inhibits the lipoxygenase in these patients.
Resumo:
Using the post-mitochondrial fraction of rat intestinal mucosa, we have investigated lycopene metabolism. The incubation media was composed of NAD+, KCI, and DTT with or without added lipoxygenase. The addition of lipoxygenase into the incubation significantly increased the production of lycopene metabolites. The enzymatic incubation products of 2H10 lycopene were separated using high-performance liquid chromatography and analyzed by UV/Vis spectrophotometer and atmospheric pressure chemical ionization-mass spectroscopy. We have identified two types of products: cleavage products and oxidation products. The cleavage products are likely: (1) 3-keto-apo-13-lycopenone (C18H24O2 or 6,10,14-trimethyl-12-one-3,5,7,9,13-pentadecapentaen-2-one) with lambdamax = 365 nm and m/z =272 and (2) 3,4-dehydro-5,6-dihydro-15-apo-lycopenal (C20H28O or 3,7,11,15-tetramethyl-2,4,6,8,12,14-hexadecahexaen-l-al) with lambdamax= 380 nm and m/z = 284. The oxidative metabolites are likely: (3) 2-ene-5,8-lycopenal-furanoxide (C37H50O) with lambdamax = 415 nm, 435 nm, and 470 nm, and m/z = 510; (4) lycopene-5, 6, 5', 6'-diepoxide (C40H56O2) with lambdamax = 415 nm, 440 nm, and 470 nm, and m/z =568; (5) lycopene-5,8-furanoxide isomer (I) (C40H56O2) with lambdamax = 410 nm, 440 nm, and 470 nm, and m/z = 552; (6) lycopene-5,8-epoxide isomer (II) (C40H56O) with lambdamax = 410, 440, 470 nm, and m/z = 552; and (7) 3-keto-lycopene-5',8'-furanoxide (C40H54O2) with lambdamax = 400 nm, 420 nm, and 450 nm, and m/z = 566. These results demonstrate that both central and excentric cleavage of lycopene occurs in the rat intestinal mucosa in the presence of soy lipoxygenase.
Resumo:
In the present study, we investigate whether mast cells and macrophages are involved in the control of IL-1β-induced neutrophil migration, as well as the participation of chemotactic mediators. IL-1β induced a dose-dependent neutrophil migration to the peritoneal cavity of rats which depends on LTB 4, PAF and cytokines, since the animal treatment with inhibitors of these mediators (MK 886, PCA 4248 and dexamethasone respectively) inhibited IL-1β-induced neutrophil migration. The neutrophil migration induced by IL-1β is dependent on mast cells and macrophages, since depletion of mast cells reduced the process whereas the increase of macrophage population enhanced the migration. Moreover, mast cells or macrophages stimulated with IL-1β released a neutrophil chemotactic factor, which mimicked the neutrophil migration induced by IL-1β. The chemotactic activity of the supernatant of IL-1β-stimulated macrophages is due to the presence of LTB4, since MK 886 inhibited its release. Moreover, the chemotactic activity of IL-1β-stimulated mast cells supernatant is due to the presence of IL-1β and TNF-α, since antibodies against these cytokines inhibited its activity. Furthermore, significant amounts of these cytokines were detected in the supernatant. In conclusion, our results suggest that neutrophil migration induced by IL-1β depends upon LTB4 released by macrophages and upon IL-1β and TNFα released by mast cells. © 2007 Springer Science+Business Media, LLC.