828 resultados para Linear regression analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indoor residual spraying (IRS) has become an increasingly popular method of insecticide use for malaria control, and many recent studies have reported on its effectiveness in reducing malaria burden in a single community or region. There is a need for systematic review and integration of the published literature on IRS and the contextual determining factors of its success in controlling malaria. This study reports the findings of a meta-regression analysis based on 13 published studies, which were chosen from more than 400 articles through a systematic search and selection process. The summary relative risk for reducing malaria prevalence was 0.38 (95% confidence interval = 0.31-0.46), which indicated a risk reduction of 62%. However, an excessive degree of heterogeneity was found between the studies. The meta-regression analysis indicates that IRS is more effective with high initial prevalence, multiple rounds of spraying, use of DDT, and in regions with a combination of Plasmodium falciparum and P. vivax malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the problem of supervised linear dimensionality reduction, taking an information-theoretic viewpoint. The linear projection matrix is designed by maximizing the mutual information between the projected signal and the class label. By harnessing a recent theoretical result on the gradient of mutual information, the above optimization problem can be solved directly using gradient descent, without requiring simplification of the objective function. Theoretical analysis and empirical comparison are made between the proposed method and two closely related methods, and comparisons are also made with a method in which Rényi entropy is used to define the mutual information (in this case the gradient may be computed simply, under a special parameter setting). Relative to these alternative approaches, the proposed method achieves promising results on real datasets. Copyright 2012 by the author(s)/owner(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this past decade finite volume (FV) methods have increasingly been used for the solution of solid mechanics problems. This contribution describes a cell vertex finite volume discretisation approach to the solution of geometrically nonlinear (GNL) problems. These problems, which may well have linear material properties, are subject to large deformation. This requires a distinct formulation, which is described in this paper together with the solution strategy for GNL problem. The competitive performance for this procedure against the conventional finite element (FE) formulation is illustrated for a three dimensional axially loaded column.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the surface properties of and work required to remove 12 commercially available and developmental catheters from a model biological medium (agar), a measure of catheter lubricity, were characterised and the relationships between these properties were examined using multiple regression and correlation analysis. The work required for removal of catheter sections (7 cm) from a model biological medium (1% w/w agar) were examined using tensile analysis. The water wettability of the catheters were characterised using dynamic contact angle analysis, whereas surface roughness was determined using atomic force microscopy. Significant differences in the ease of removal were observed between the various catheters, with the silicone-based materials generally exhibiting the greatest ease of removal. Similarly, the catheters exhibited a range of advancing and receding contact angles that were dependent on the chemical nature of each catheter. Finally, whilst the microrugosities of the various catheters differed, no specific relationship to the chemical nature of the biomaterial was apparent. Using multiple regression analysis, the relationship between ease of removal, receding contact angle and surface roughness was defined as: Work done (N mm) 17.18 + 0.055 Rugosity (nm)-0.52 Receding contact angle (degrees) (r = 0.49). Interestingly, whilst the relationship between ease of removal and surface roughness was significant (r = 0.48, p = 0.0005), in which catheter lubricity increased as the surface roughness decreased, this was not the case with the relationship between ease of removal and receding contact angle (r = -0.18, p > 0.05). This study has therefore uniquely defined the contributions of each of these surface properties to catheter lubricity. Accordingly, in the design of urethral catheters. it is recommended that due consideration should be directed towards biomaterial surface roughness to ensure maximal ease of catheter removal. Furthermore, using the method described in this study, differences in the lubricity of the various catheters were observed that may be apparent in their clinical use. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: We sought to determine if a common polymorphism can influence vulnerability to LDL cholesterol, and thereby influence the clinical benefit derived from therapies that reduce LDL cholesterol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airborne concentrations of Poaceae pollen have been monitored in Poznań for more than ten years and the length of the dataset is now considered sufficient for statistical analysis. The objective of this paper is to produce long-range forecasts that predict certain characteristics of the grass pollen season (such as the start, peak and end dates of the grass pollen season) as well as short-term forecasts that predict daily variations in grass pollen counts for the next day or next few days throughout the main grass pollen season. The method of forecasting was regression analysis. Correlation analysis was used to examine the relationship between grass pollen counts and the factors that affect its production, release and dispersal. The models were constructed with data from 1994-2004 and tested on data from 2005 and 2006. The forecast models predicted the start of the grass pollen season to within 2 days and achieved 61% and 70% accuracy on a scale of 1-4 when forecasting variations in daily grass pollen counts in 2005 and 2006 respectively. This study has emphasised how important the weather during the few weeks or months preceding pollination is to grass pollen production, and draws attention to the importance of considering large-scale patterns of climate variability (indices of the North Atlantic Oscillation) when constructing forecast models for allergenic pollen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.