945 resultados para Ligante RANK
Resumo:
Tesis (Maestro en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) UANL, 2013.
Resumo:
In this paper, we model the interactions between the distribution of male and female wages under the assumption that any change in the wage distribution of women must be offset by an opposite change in the wage distribution of men.
Resumo:
In this paper, we model the interactions between the distribution of male and female wages under the assumption that any change in the wage distribution of women must be offset by an opposite change in the wage distribution of men.
Resumo:
Usually, psychometricians apply classical factorial analysis to evaluate construct validity of order rank scales. Nevertheless, these scales have particular characteristics that must be taken into account: total scores and rank are highly relevant
Resumo:
A novel technique for estimating the rank of the trajectory matrix in the local subspace affinity (LSA) motion segmentation framework is presented. This new rank estimation is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built with LSA. The result is an enhanced model selection technique for trajectory matrix rank estimation by which it is possible to automate LSA, without requiring any a priori knowledge, and to improve the final segmentation
Resumo:
The Rank Forum on Vitamin D was held on 2nd and 3rd July 2009 at the University of Surrey, Guildford, UK. The workshop consisted of a series of scene-setting presentations to address the current issues and challenges concerning vitamin D and health, and included an open discussion focusing on the identification of the concentrations of serum 25-hydroxyvitamin D (25(OH)D) (a marker of vitamin D status) that may be regarded as optimal, and the implications this process may have in the setting of future dietary reference values for vitamin D in the UK. The Forum was in agreement with the fact that it is desirable for all of the population to have a serum 25(OH)D concentration above 25 nmol/l, but it discussed some uncertainty about the strength of evidence for the need to aim for substantially higher concentrations (25(OH)D concentrations . 75 nmol/l). Any discussion of ‘optimal’ concentration of serum 25(OH)D needs to define ‘optimal’ with care since it is important to consider the normal distribution of requirements and the vitamin D needs for a wide range of outcomes. Current UK reference values concentrate on the requirements of particular subgroups of the population; this differs from the approaches used in other European countries where a wider range of age groups tend to be covered. With the re-emergence of rickets and the public health burden of low vitamin D status being already apparent, there is a need for urgent action from policy makers and risk managers. The Forum highlighted concerns regarding the failure of implementation of existing strategies in the UK for achieving current vitamin D recommendations.
Resumo:
The concepts of rank, underdetermined systems and consistency in linear algebra are discussed in the context of a puzzle. The article begins with a specific example, moving on to a generalization of the example and then to the general n x n case. As well as providing a solution of the puzzle, the article aims to provide students with a greater understanding of these abstract ideas in linear algebra through the study of the puzzle.
Resumo:
The application of forecast ensembles to probabilistic weather prediction has spurred considerable interest in their evaluation. Such ensembles are commonly interpreted as Monte Carlo ensembles meaning that the ensemble members are perceived as random draws from a distribution. Under this interpretation, a reasonable property to ask for is statistical consistency, which demands that the ensemble members and the verification behave like draws from the same distribution. A widely used technique to assess statistical consistency of a historical dataset is the rank histogram, which uses as a criterion the number of times that the verification falls between pairs of members of the ordered ensemble. Ensemble evaluation is rendered more specific by stratification, which means that ensembles that satisfy a certain condition (e.g., a certain meteorological regime) are evaluated separately. Fundamental relationships between Monte Carlo ensembles, their rank histograms, and random sampling from the probability simplex according to the Dirichlet distribution are pointed out. Furthermore, the possible benefits and complications of ensemble stratification are discussed. The main conclusion is that a stratified Monte Carlo ensemble might appear inconsistent with the verification even though the original (unstratified) ensemble is consistent. The apparent inconsistency is merely a result of stratification. Stratified rank histograms are thus not necessarily flat. This result is demonstrated by perfect ensemble simulations and supplemented by mathematical arguments. Possible methods to avoid or remove artifacts that stratification induces in the rank histogram are suggested.
Resumo:
Sparse coding aims to find a more compact representation based on a set of dictionary atoms. A well-known technique looking at 2D sparsity is the low rank representation (LRR). However, in many computer vision applications, data often originate from a manifold, which is equipped with some Riemannian geometry. In this case, the existing LRR becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to applications. In this paper, we generalize the LRR over the Euclidean space to the LRR model over a specific Rimannian manifold—the manifold of symmetric positive matrices (SPD). Experiments on several computer vision datasets showcase its noise robustness and superior performance on classification and segmentation compared with state-of-the-art approaches.
Resumo:
We consider real analytic involutive structures V, of co-rank one, defined on a real analytic paracompact orientable manifold M. To each such structure we associate certain connected subsets of M which we call the level sets of V. We prove that analytic regularity propagates along them. With a further assumption on the level sets of V we characterize the global analytic hypoellipticity of a differential operator naturally associated to V. As an application we study a case of tube structures.