963 resultados para Lichtsammelkomplex EPR Monomer Trimer Strukturanalyse
Resumo:
Two high-performance liquid chromatographic methods for determination of residual monomer in dental acrylic resins are described. Monomers were detected by their UV absorbance at 230 nm, on a Nucleosil((R)) C-18 (5 mu m particle size, 100 angstrom pore size, 15 x 0.46 cm i.d.) column. The separation was performed using acetonitrile-water (55:45 v/v) containing 0.01% triethylamine (TEA) for methyl methacrylate and butyl methacrylate, and acetonitrile-water (60:40 v/v) containing 0.01% TEA for isobutyl methacrylate and 1,6-hexanediol dimethacrylate as mobile phases, at a flow rate of 0.8 mL/min. Good linear relationships were obtained in the concentration range 5.0-80.0 mu g/mL for methyl methacrylate, 10.0-160.0 mu g/mL for butyl methacrylate, 50.0-500.0 mu g/mL for isobutyl methacrylate and 2.5-180.0 mu g/mL for 1,6-hexanediol dimethacrylate. Adequate assay for intra- and inter-day precision and accuracy was observed during the validation process. An extraction procedure to remove residual monomer from the acrylic resins was also established. Residual monomer was obtained from broken specimens of acrylic disks using methanol as extraction solvent for 2 h in an ice-bath. The developed methods and the extraction procedure were applied to dental acrylic resins, tested with or without post-polymerization treatments, and proved to be accurate and precise for the determination of residual monomer content of the materials evaluated. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Raman spectroscopy and Electron Paramagnetic Resonance (EPR) studies were performed on a series of V(2)O(5)/TiO(2) catalysts prepared by a modified sol-gel method in order to identify the vanadium species. Two species of surface vanadium were identified by Raman measurements, monomeric vanadyls and polymeric vanadates. Monomeric vanadyls are characterized by a narrow Raman band at 1030 cm(-1) and polymeric vanadates by two broad bands in the region from 900 to 960 cm(-1) and 770 to 850 cm(-1). The Raman spectra do not exhibit characteristic peaks of crystalline V(2)O(5). These results are in agreement with those of X-ray Diffractometry (XRD) and Fourier Transform Infrared (FT-IR) previously reported (C.B. Rodella et al., J. Sol-Gel Sci. Techn., submitted). At least three families of V(4+) ions were identified by EPR investigations. The analysis of the EPR spectra suggests that isolated V(4+) ions are located in sites with octahedral symmetry substituting for Ti(4+) ions in the rutile structure. Magnetically interacting V(4+) ions are also present as pairs or clusters giving rise to a broad and structureless EPR line. At higher concentration of V(2)O(5), a partial oxidation of V(4+) to V(5+) is apparent from the EPR results.
Resumo:
The objective of this study was to evaluate the durability of bond strength between a resin cement and aluminous ceramic submitted to various surface conditioning methods. Twenty-four blocks (5 X 5 X 4 mm 3) of a glass-in filtrated zirconia-alumina ceramic (inCeram Zirconia Classic) were randomly divided into three surface treatment groups: ST1-Air-abrasion with 110-mu m Al2O3 particles + silanization; ST2-Laboratory tribochemical silica coating method (110-mu m Al2O3, ilO-PM Silica) (Rocatec) + silanization; ST3-Chairside tribochemical silica coating method (30-mu m SiOx) (CoJet) + silanization. Each treated ceramic block was placed in its silicone mold with the treated surface exposed. The resin cement (Panavia F) was prepared and injected into the mold over the treated surface. Specimens were sectioned to achieve nontrimmed bar specimens (14 sp/block) that were randomly divided into two conditions: (a) Dry-microtensile test after sectioning; (b) Thermocycling (TC)-(6,000X, 5-55 degrees C) and water storage (150 days). Thus, six experimental groups were obtained (11 = 50): Gr1-ST1 + dry; Gr2-ST1 + TC. Gr3-ST2 + dry; Gr4-ST2 + TC; Gr5-ST3 + dry; Gr6ST3 + TC. After microtensile testing, the failure types were noted. ST2 (25.1 +/- 11) and ST3 (24.1 +/- 7.4) presented statistically higher bond strength (MPa) than that of STI (17.5 +/- 8) regardless of aging conditions (p < 0.0001). While Gr2 revealed the lowest results (13.3 +/- 6.4), the other groups (21.7 +/- 7.4-25. 9 +/- 9.1) showed statistically no significant differences (two-way ANOVA and Tukey's test, a 0.05). The majority of the failures were mixed (82%) followed by adhesive failures (18%). Gr2 presented significantly higher incidence of ADHESIVE failures (54%) than those of other groups (p = 0.0001). Both laboratory and chairside silica coating plus silanization showed durable bond strength. After aging, airabrasion with 110-mu m Al2O3 + silanization showed the largest decrease indicating that aging is fundamental for bond strength testing for acid-resistant Arconia ceramics in order to estimate their long-term performance in the mouth. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The importance of soil organic matter functions is well known, but structural information, chemical composition and changes induced by anthropogenic factors such as tillage practices are still being researched. In the present paper were characterized Brazilian humic acids (HAs) from an Oxisol under different treatments: conventional tillage/maize-bare fallow (CT1); conventional tillage/maize rotation with soybean-bare fallow (CT2)-, no-till/maize-bare fallow (NT1); no-till/maize rotation with soybean-bare fallow (NT2); no-till/maize-cajanus (NT3) and no cultivated soil under natural vegetation (NC). Soil HA samples were analyzed by electron paramagnetic resonance (EPR), solid-state C-13 nuclear magnetic resonance (C-13 NMR), Fourier transform intra-red (FTIR) and UV-Vis fluorescence spectroscopies and elemental analysis (CHNS). The FTIR spectra of the HAs were similar for all treatments. The level of semiquinone-type free radical determined from the EPR spectra was lower for treatments no-till/maize-cajanus (NT3) and noncultivated soil (1.74 X 10(17) and 1.02 x 10(17) spins g(-1) HA, respectively), compared with 2.3 X 10(17) spins g(-1) HA for other soils under cultivation. The percentage of aromatic carbons determined by C-13 NMR also decreases for noncultivated soil to 24%, being around 30% for samples of the other treatments. The solid-state C-13 NMR and EPR spectroscopies showed small differences in chemical composition of the HA from soils where incorporation of vegetal residues was higher, showing that organic matter (OM) formed in this cases is less aromatic. The fluorescence intensities were in agreement with the percentage of aromatic carbons, determined by NMR (r = 0.97 P < 0.01) and with semiquinone content, determined by EPR (r = 0.97 P < 0.01). No important effect due to tillage system was observed in these areas after 5 years of cultivation. Probably, the studied Oxisol has a high clay content that offers protection to the clay-Fe-OM complex against strong structural alterations. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Minidosimeters of L-alanine and 2-methylalanine (2MA) were prepared and tested as potential candidates for small radiation field dosimetry. To quantify the free radicals created by radiation a K-Band (24 GHz) EPR spectrometer was used. X-rays provided by a 6 MV clinical linear accelerator were used to irradiate the minidosimeters in the dose range of 0.5-30 Gy. The dose-response curves for both radiation sensitive materials displayed a good linear behavior in the dose range indicated with 2MA being more radiation sensitive than L-alanine. Moreover, 2MA showed a smaller LLD (lower limit detection) value. The proposed system minidosimeter/K-Band spectrometer was able to detect 10 Gy EPR spectra with good signal-to-noise ratio (S/N). The overall uncertainty indicates that this system shows a good performance for the detection of dose values of 20 Gy and above, which are dose values typically used in radiosurgery treatments. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Objectives. This study compared the residual monomer (RM) in four hard chair-side reline resins (Duraliner II-D, Kooliner-K, Tokuso Rebase Fast-TRF and Ufi Gel hard-UGH) and one heat-polymerized denture base resin (Lucitone 550-L), which was processed using two polymerization cycles (short-LS and long-LL). It was also investigated the effect of two after polymerization treatments on this RM content.Methods. Specimens (n = 18) of each material were produced following the manufacturers' instructions and then divided into three groups. Group I specimens were left untreated (GI-control). Specimens of group II (GII) were given post-polymerization treatment by microwave irradiation. In group III (GIII), specimens were submitted to immersion in water at 55 degrees C (reline resins-10 min; denture base resin L-60min). The RM was analyzed using high performance liquid chromatography (HPLC) and expressed as a percentage of RM. Data were analyzed by two-way ANOVA followed by Tukey's test (alpha = 0.05).Results. Comparing control specimens, statistical differences were found among all materials (p < 0.05), and the results can be arranged as K (1.52%) > D (0.85%) > UGH (0.45%) > LL (0.24%) > TRF (0.14%) > LS (0.08%). Immersion in hot water (GIII) promoted a significant (p < 0.05) reduction in the RM for all materials evaluated compared to control (GI), with the exception of LL specimens. Materials K, UGH and TRF exhibited significantly (p < 0.05) lower values of RM after microwave irradiation (GII) than in the control specimens.Significance. The reduction in RM promoted by water-bath and microwave post-polymerization treatments could improve the mechanical properties and biocompatibility of the relining and denture base materials. (c) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The new complex [Cu(NCS)(2)(pn)] (1) (pn = 1,3-propanediamine) has been synthesized and characterized by elemental analysis, infrared and electronic spectroscopy. Single crystal X-ray diffraction studies revealed that complex 1 is made up of neutral [Cu(NCS)(2)(pn)] units which are connected by mu-1,3,3-thiocyanato groups to yield a 2D metal-organic framework with a brick-wall network topology. Intermolecular hydrogen bonds of the type NH...SCN and NH...NCS are also responsible for the stabilization of the crystal structure. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In spite of all progressive efforts aiming to optimize SPPS, serious problems mainly affecting the assembly of aggregating sequences have persisted. Following the study intended to unravel the complex solvation phenomenon of peptide-resin beads, the XING and XAAAA model aggregating segments were labeled with a paramagnetic probe and studied via EPR spectroscopy. Low and high substituted resins were also comparatively used, with the X residue being Asx or Glx containing the main protecting groups used in the SPPS. Notably, the cyclo-hexyl group used for Asp and Glu residues in Boc-chemistry induced greater chain immobilization than its tert-butyl partner-protecting group of the Fmoc strategy. Otherwise, the most impressive peptide chain immobilization occurred when the large trytil group was used for Asn and Gln protection in Fmoc-chemistry. These surprising results thus seem to stress the possibility of the relevant influence of the amino-acid side chain protecting groups in the overall peptide synthesis yield. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
An EPR approach to monitor peptide chain aggregation inside resin beads is introduced. Model low and highly peptide-loaded resins containing an aggregating sequence were labeled with a paramagnetic amino acid derivative and studied with regard to their solvation behavior in different solvent systems. For the first time in the peptide synthesis, EPR spectroscopic has allowed the detection of differentiated levels of peptide chain aggregation as a function of solvent and resin loading. (C) 1997, Elsevier B.V. Ltd. All rights reserved.
Resumo:
The interaction of OH- with Fe(TPP)(+), Fe(TDCPP)(+), Fe(TMP)(+) and Fe(TFPP)(+) in 1,2-dichloroethane was studied by titrating FeP solutions with aliquots of a solution of tetrabutylammonium hydroxide in acetonitrile. The number of OH- ions (n) coordinated to the FeP and the stability constants (beta(n)) for the FeP-OH- complexes were calculated from UV-Vis absorbance data and iron spin states were determined through EPR spectroscopy, Fe(TMP) (+) forms a high-spin mono-hydroxo complex, while Fe(TPP)I and Fe(TDCPP)(+) form high-spin bis-hydroxo complexes. To our knowledge, this is the first time that the formation of bis-hydroxo complexes from Fe(TPP) (+) has been reported, and this was possible because the studies were carried out in basic organic media, In this same medium, Fe-III-Fe-II reduction upon OH- addition to Fe(TFPP) (+) was observed, without concomitant formation of the mu-oxo dimeric species [Fe(TFPP)](2)O. (C) 1999 Elsevier B.V., All rights reserved.
Resumo:
Anomalous thermal behavior on the EPR linewidths of Gd impurities diluted in Cc compounds has been observed. In metals, the local magnetic moment EPR linewidth, Delta H, is expected to increase linearly with the temperature. In contrast, in CexLa1-xOs2 the Gd EPR spectra show a nonlinear increase. In this work, the mechanisms that are responsible for the thermal behavior of the EPR lines in CexLa1-xOs2 are examined. We show that the exchange interaction between the local magnetic moments and the conduction electrons are responsible for the narrowing of the spectra at low temperatures. At high temperatures, the contribution to the linewidth of the exchange interaction between the local magnetic moments and the Ce ions has an exponential dependence on the excitation energy of the intermediate valent ions. A complete fitting of the EPR spectra for powdered samples is obtained, (C) 1998 American Institute of Physics. [S0021-8979(98)39911-9].
Resumo:
The results described in this work are part of a systematic search for long wavelength laser lines to be used in high magnetic field EPR applications and in plasma diagnostic. Four new far-infrared laser lines of CH2 = CF2 (1,1 difluoroethylene), optically pumped by a waveguide CO2 laser, have been discovered and characterized in wavelength, polarization relative to the pumping radiation and offset relative to the CO2 center frequency. New measurements of polarization and offset of 5 already known laser lines are also reported. A table of all of the known CO2 pumped FIR laser lines from this molecule is given.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)