949 resultados para LMS Structure, Ternary Filtering, Algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlling the quality variables (such as basis weight, moisture etc.) is a vital part of making top quality paper or board. In this thesis, an advanced data assimilation tool is applied to the quality control system (QCS) of a paper or board machine. The functionality of the QCS is based on quality observations that are measured with a traversing scanner making a zigzag path. The basic idea is the following: The measured quality variable has to be separated into its machine direction (MD) and cross direction (CD) variations due to the fact that the QCS works separately in MD and CD. Traditionally this is done simply by assuming one scan of the zigzag path to be the CD profile and its mean value to be one point of the MD trend. In this thesis, a more advanced method is introduced. The fundamental idea is to use the signals’ frequency components to represent the variation in both CD and MD. To be able to get to the frequency domain, the Fourier transform is utilized. The frequency domain, that is, the Fourier components are then used as a state vector in a Kalman filter. The Kalman filter is a widely used data assimilation tool to combine noisy observations with a model. The observations here refer to the quality measurements and the model to the Fourier frequency components. By implementing the two dimensional Fourier transform into the Kalman filter, we get an advanced tool for the separation of CD and MD components in total variation or, to be more general, for data assimilation. A piece of a paper roll is analyzed and this tool is applied to model the dataset. As a result, it is clear that the Kalman filter algorithm is able to reconstruct the main features of the dataset from a zigzag path. Although the results are made with a very short sample of paper roll, it seems that this method has great potential to be used later on as a part of the quality control system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q²) between experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the network vulnerability to natural hazards has been noticed. Moreover, operating on the limits of the network transmission capabilities have resulted in major outages during the past decade. One of the reasons for operating on these limits is that the network has become outdated. Therefore, new technical solutions are studied that could provide more reliable and more energy efficient power distributionand also a better profitability for the network owner. It is the development and price of power electronics that have made the DC distribution an attractive alternative again. In this doctoral thesis, one type of a low-voltage DC distribution system is investigated. Morespecifically, it is studied which current technological solutions, used at the customer-end, could provide better power quality for the customer when compared with the current system. To study the effect of a DC network on the customer-end power quality, a bipolar DC network model is derived. The model can also be used to identify the supply parameters when the V/kW ratio is approximately known. Although the model provides knowledge of the average behavior, it is shown that the instantaneous DC voltage ripple should be limited. The guidelines to choose an appropriate capacitance value for the capacitor located at the input DC terminals of the customer-end are given. Also the structure of the customer-end is considered. A comparison between the most common solutions is made based on their cost, energy efficiency, and reliability. In the comparison, special attention is paid to the passive filtering solutions since the filter is considered a crucial element when the lifetime expenses are determined. It is found out that the filter topology most commonly used today, namely the LC filter, does not provide economical advantage over the hybrid filter structure. Finally, some of the typical control system solutions are introduced and their shortcomings are presented. As a solution to the customer-end voltage regulation problem, an observer-based control scheme is proposed. It is shown how different control system structures affect the performance. The performance meeting the requirements is achieved by using only one output measurement, when operating in a rigid network. Similar performance can be achieved in a weak grid by DC voltage measurement. An additional improvement can be achieved when an adaptive gain scheduling-based control is introduced. As a conclusion, the final power quality is determined by a sum of various factors, and the thesis provides the guidelines for designing the system that improves the power quality experienced by the customer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kaasukaarihitsauksessa suojakaasuna käytetään yleensä argonin ja hiilidioksidin tai argonin ja heliumin seoksia. Suojakaasu vaikuttaa useisiin hitsausominaisuuksiin, jotka puolestaan vaikuttavat hitsauksen laatuun ja tuottavuuteen. Automaattisella suojakaasun tunnistuksella ja virtausmäärän mittauksella voitaisiin tehdä hitsauksesta paitsi käyttäjän kannalta yksinkertaisempaa, myös laadukkaampaa. Työn tavoite on löytää mahdollisimman edullinen ja kuitenkin mahdollisimman tarkasti kaasuseoksia tunnistava menetelmä, jota voitaisiin hyödyntää MIG/MAG-hitsauskoneeseen sisäänrakennettuna. Selvä etu on, jos menetelmällä voidaan mitata myös kaasun virtausmäärä. Äänennopeus kaasumaisessa väliaineessa on aineen atomi- ja molekyylirakenteesta ja lämpötilasta riippuva ominaisuus, joka voidaan mitata melko edullisesti. Äänennopeuden määritys perustuu ääniaallon kulkuajan mittaamiseen tunnetun pituisella matkalla. Kaasun virtausnopeus on laskettavissa myötä- ja vastavirtaan mitattujen kulkuaikojen erotuksen avulla. Rakennettu mittauslaitteisto koostuu kahdesta ultraäänimuuntimesta, joiden halkaisija on 10 mm ja jotka toimivat sekä lähettimenä että vastaanottimena. Muuntimet ovat 140 mm:n etäisyydellä toisistaan virtauskanavassa, jossa suojakaasu virtaa yhdensuuntaisesti äänen kanssa. Virtauskanava on putki, jossa on käytetty elastisia materiaaleja, jotta ääniaaltojen eteneminen kanavan runkoa pitkin minimoituisi. Kehitetty algoritmi etsii kahden lähetetyn 40 kHz:n taajuisen kanttiaaltopulssin aiheuttaman vasteen perusteella ääniaallon saapumisajanhetken. Useiden mittausten, tulosten lajittelun ja suodatuksen jälkeen tuntemattomalle kaasulle lasketaan lämpötilakompensoitu vertailuluku. Tuntematon kaasu tunnistetaan vertailemalla lukua tunnettujen kaasuseosten mitattuihin vertailulukuihin. Laitteisto tunnistaa seokset, joissa heliumin osuus argonissa on enintään 50 %. Hiilidioksidia sisältävät argonin seokset puolestaan tunnistetaan puhtaaseen hiilidioksidiin asti jopa kahden prosenttiyksikön tarkkuudella. Kaasun tilavuusvirtausmittauksen tarkkuus on noin 1,0 l/min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of an industrial robot is mainly a problem of dynamics. It includes non-linearities, uncertainties and external perturbations that should be considered in the design of control laws. In this work, two control strategies based on variable structure controllers (VSC) and a PD control algorithm are compared in relation to the tracking errors considering friction. The controller's performances are evaluated by adding an static friction model. Simulations and experimental results show it is possible to diminish tracking errors by using a model based friction compensation scheme. A SCARA robot is used to illustrate the conclusions of this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental Extended X-ray Absorption Fine Structure (EXAFS) spectra carry information about the chemical structure of metal protein complexes. However, pre- dicting the structure of such complexes from EXAFS spectra is not a simple task. Currently methods such as Monte Carlo optimization or simulated annealing are used in structure refinement of EXAFS. These methods have proven somewhat successful in structure refinement but have not been successful in finding the global minima. Multiple population based algorithms, including a genetic algorithm, a restarting ge- netic algorithm, differential evolution, and particle swarm optimization, are studied for their effectiveness in structure refinement of EXAFS. The oxygen-evolving com- plex in S1 is used as a benchmark for comparing the algorithms. These algorithms were successful in finding new atomic structures that produced improved calculated EXAFS spectra over atomic structures previously found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le présent mémoire comprend un survol des principales méthodes de rendu en demi-tons, de l’analog screening à la recherche binaire directe en passant par l’ordered dither, avec une attention particulière pour la diffusion d’erreur. Ces méthodes seront comparées dans la perspective moderne de la sensibilité à la structure. Une nouvelle méthode de rendu en demi-tons par diffusion d’erreur est présentée et soumise à diverses évaluations. La méthode proposée se veut originale, simple, autant à même de préserver le caractère structurel des images que la méthode à l’état de l’art, et plus rapide que cette dernière par deux à trois ordres de magnitude. D’abord, l’image est décomposée en fréquences locales caractéristiques. Puis, le comportement de base de la méthode proposée est donné. Ensuite, un ensemble minutieusement choisi de paramètres permet de modifier ce comportement de façon à épouser les différents caractères fréquentiels locaux. Finalement, une calibration détermine les bons paramètres à associer à chaque fréquence possible. Une fois l’algorithme assemblé, toute image peut être traitée très rapidement : chaque pixel est attaché à une fréquence propre, cette fréquence sert d’indice pour la table de calibration, les paramètres de diffusion appropriés sont récupérés, et la couleur de sortie déterminée pour le pixel contribue en espérance à souligner la structure dont il fait partie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans ce mémoire nous allons présenter une méthode de diffusion d’erreur originale qui peut reconstruire des images en demi-ton qui plaisent à l’œil. Cette méthode préserve des détails fins et des structures visuellement identifiables présentes dans l’image originale. Nous allons tout d’abord présenter et analyser quelques travaux précédents afin de montrer certains problèmes principaux du rendu en demi-ton, et nous allons expliquer pourquoi nous avons décidé d’utiliser un algorithme de diffusion d’erreur pour résoudre ces problèmes. Puis nous allons présenter la méthode proposée qui est conceptuellement simple et efficace. L’image originale est analysée, et son contenu fréquentiel est détecté. Les composantes principales du contenu fréquentiel (la fréquence, l’orientation et le contraste) sont utilisées comme des indices dans un tableau de recherche afin de modifier la méthode de diffusion d’erreur standard. Le tableau de recherche est établi dans un étape de pré-calcul et la modification est composée par la modulation de seuil et la variation des coefficients de diffusion. Ensuite le système en entier est calibré de façon à ce que ces images reconstruites soient visuellement proches d’images originales (des aplats d’intensité constante, des aplats contenant des ondes sinusoïdales avec des fréquences, des orientations et des constrastes différents). Finalement nous allons comparer et analyser des résultats obtenus par la méthode proposée et des travaux précédents, et démontrer que la méthode proposée est capable de reconstruire des images en demi-ton de haute qualité (qui préservent des structures) avec un traitement de temps très faible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans un premier temps, nous avons modélisé la structure d’une famille d’ARN avec une grammaire de graphes afin d’identifier les séquences qui en font partie. Plusieurs autres méthodes de modélisation ont été développées, telles que des grammaires stochastiques hors-contexte, des modèles de covariance, des profils de structures secondaires et des réseaux de contraintes. Ces méthodes de modélisation se basent sur la structure secondaire classique comparativement à nos grammaires de graphes qui se basent sur les motifs cycliques de nucléotides. Pour exemplifier notre modèle, nous avons utilisé la boucle E du ribosome qui contient le motif Sarcin-Ricin qui a été largement étudié depuis sa découverte par cristallographie aux rayons X au début des années 90. Nous avons construit une grammaire de graphes pour la structure du motif Sarcin-Ricin et avons dérivé toutes les séquences qui peuvent s’y replier. La pertinence biologique de ces séquences a été confirmée par une comparaison des séquences d’un alignement de plus de 800 séquences ribosomiques bactériennes. Cette comparaison a soulevée des alignements alternatifs pour quelques unes des séquences que nous avons supportés par des prédictions de structures secondaires et tertiaires. Les motifs cycliques de nucléotides ont été observés par les membres de notre laboratoire dans l'ARN dont la structure tertiaire a été résolue expérimentalement. Une étude des séquences et des structures tertiaires de chaque cycle composant la structure du Sarcin-Ricin a révélé que l'espace des séquences dépend grandement des interactions entre tous les nucléotides à proximité dans l’espace tridimensionnel, c’est-à-dire pas uniquement entre deux paires de bases adjacentes. Le nombre de séquences générées par la grammaire de graphes est plus petit que ceux des méthodes basées sur la structure secondaire classique. Cela suggère l’importance du contexte pour la relation entre la séquence et la structure, d’où l’utilisation d’une grammaire de graphes contextuelle plus expressive que les grammaires hors-contexte. Les grammaires de graphes que nous avons développées ne tiennent compte que de la structure tertiaire et négligent les interactions de groupes chimiques spécifiques avec des éléments extra-moléculaires, comme d’autres macromolécules ou ligands. Dans un deuxième temps et pour tenir compte de ces interactions, nous avons développé un modèle qui tient compte de la position des groupes chimiques à la surface des structures tertiaires. L’hypothèse étant que les groupes chimiques à des positions conservées dans des séquences prédéterminées actives, qui sont déplacés dans des séquences inactives pour une fonction précise, ont de plus grandes chances d’être impliqués dans des interactions avec des facteurs. En poursuivant avec l’exemple de la boucle E, nous avons cherché les groupes de cette boucle qui pourraient être impliqués dans des interactions avec des facteurs d'élongation. Une fois les groupes identifiés, on peut prédire par modélisation tridimensionnelle les séquences qui positionnent correctement ces groupes dans leurs structures tertiaires. Il existe quelques modèles pour adresser ce problème, telles que des descripteurs de molécules, des matrices d’adjacences de nucléotides et ceux basé sur la thermodynamique. Cependant, tous ces modèles utilisent une représentation trop simplifiée de la structure d’ARN, ce qui limite leur applicabilité. Nous avons appliqué notre modèle sur les structures tertiaires d’un ensemble de variants d’une séquence d’une instance du Sarcin-Ricin d’un ribosome bactérien. L’équipe de Wool à l’université de Chicago a déjà étudié cette instance expérimentalement en testant la viabilité de 12 variants. Ils ont déterminé 4 variants viables et 8 létaux. Nous avons utilisé cet ensemble de 12 séquences pour l’entraînement de notre modèle et nous avons déterminé un ensemble de propriétés essentielles à leur fonction biologique. Pour chaque variant de l’ensemble d’entraînement nous avons construit des modèles de structures tertiaires. Nous avons ensuite mesuré les charges partielles des atomes exposés sur la surface et encodé cette information dans des vecteurs. Nous avons utilisé l’analyse des composantes principales pour transformer les vecteurs en un ensemble de variables non corrélées, qu’on appelle les composantes principales. En utilisant la distance Euclidienne pondérée et l’algorithme du plus proche voisin, nous avons appliqué la technique du « Leave-One-Out Cross-Validation » pour choisir les meilleurs paramètres pour prédire l’activité d’une nouvelle séquence en la faisant correspondre à ces composantes principales. Finalement, nous avons confirmé le pouvoir prédictif du modèle à l’aide d’un nouvel ensemble de 8 variants dont la viabilité à été vérifiée expérimentalement dans notre laboratoire. En conclusion, les grammaires de graphes permettent de modéliser la relation entre la séquence et la structure d’un élément structural d’ARN, comme la boucle E contenant le motif Sarcin-Ricin du ribosome. Les applications vont de la correction à l’aide à l'alignement de séquences jusqu’au design de séquences ayant une structure prédéterminée. Nous avons également développé un modèle pour tenir compte des interactions spécifiques liées à une fonction biologique donnée, soit avec des facteurs environnants. Notre modèle est basé sur la conservation de l'exposition des groupes chimiques qui sont impliqués dans ces interactions. Ce modèle nous a permis de prédire l’activité biologique d’un ensemble de variants de la boucle E du ribosome qui se lie à des facteurs d'élongation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette thèse porte sur l’étude de la relation entre la structure et la fonction chez les cotransporteurs Na+/glucose (SGLTs). Les SGLTs sont des protéines membranaires qui se servent du gradient électrochimique transmembranaire du Na+ afin d’accumuler leurs substrats dans la cellule. Une mise en contexte présentera d’abord un bref résumé des connaissances actuelles dans le domaine, suivi par un survol des différentes techniques expérimentales utilisées dans le cadre de mes travaux. Ces travaux peuvent être divisés en trois projets. Un premier projet a porté sur les bases structurelles de la perméation de l’eau au travers des SGLTs. En utilisant à la fois des techniques de modélisation moléculaire, mais aussi la volumétrie en voltage imposé, nous avons identifié les bases structurelles de cette perméation. Ainsi, nous avons pu identifier in silico la présence d’une voie de perméation passive à l’eau traversant le cotransporteur, pour ensuite corroborer ces résultats à l’aide de mesures faites sur le cotransporteur Na/glucose humain (hSGLT1) exprimé dans les ovocytes. Un second projet a permis d’élucider certaines caractéristiques structurelles de hSGLT1 de par l’utilisation de la dipicrylamine (DPA), un accepteur de fluorescence dont la répartition dans la membrane lipidique dépend du potentiel membranaire. L’utilisation de la DPA, conjuguée aux techniques de fluorescence en voltage imposé et de FRET (fluorescence resonance energy transfer), a permis de démontrer la position extracellulaire d’une partie de la boucle 12-13 et le fait que hSGLT1 forme des dimères dont les sous-unités sont unies par un pont disulfure. Un dernier projet a eu pour but de caractériser les courants stationnaires et pré-stationaires d’un membre de la famille des SGLTs, soit le cotransporteur Na+/myo-inositol humain hSMIT2 afin de proposer un modèle cinétique qui décrit son fonctionnement. Nous avons démontré que la phlorizine inhibe mal les courants préstationnaires suite à une dépolarisation, et la présence de courants de fuite qui varient en fonction du temps, du potentiel membranaire et des substrats. Un algorithme de recuit simulé a été mis au point afin de permettre la détermination objective de la connectivité et des différents paramètres associés à la modélisation cinétique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le modèle GARCH à changement de régimes est le fondement de cette thèse. Ce modèle offre de riches dynamiques pour modéliser les données financières en combinant une structure GARCH avec des paramètres qui varient dans le temps. Cette flexibilité donne malheureusement lieu à un problème de path dependence, qui a empêché l'estimation du modèle par le maximum de vraisemblance depuis son introduction, il y a déjà près de 20 ans. La première moitié de cette thèse procure une solution à ce problème en développant deux méthodologies permettant de calculer l'estimateur du maximum de vraisemblance du modèle GARCH à changement de régimes. La première technique d'estimation proposée est basée sur l'algorithme Monte Carlo EM et sur l'échantillonnage préférentiel, tandis que la deuxième consiste en la généralisation des approximations du modèle introduites dans les deux dernières décennies, connues sous le nom de collapsing procedures. Cette généralisation permet d'établir un lien méthodologique entre ces approximations et le filtre particulaire. La découverte de cette relation est importante, car elle permet de justifier la validité de l'approche dite par collapsing pour estimer le modèle GARCH à changement de régimes. La deuxième moitié de cette thèse tire sa motivation de la crise financière de la fin des années 2000 pendant laquelle une mauvaise évaluation des risques au sein de plusieurs compagnies financières a entraîné de nombreux échecs institutionnels. À l'aide d'un large éventail de 78 modèles économétriques, dont plusieurs généralisations du modèle GARCH à changement de régimes, il est démontré que le risque de modèle joue un rôle très important dans l'évaluation et la gestion du risque d'investissement à long terme dans le cadre des fonds distincts. Bien que la littérature financière a dévoué beaucoup de recherche pour faire progresser les modèles économétriques dans le but d'améliorer la tarification et la couverture des produits financiers, les approches permettant de mesurer l'efficacité d'une stratégie de couverture dynamique ont peu évolué. Cette thèse offre une contribution méthodologique dans ce domaine en proposant un cadre statistique, basé sur la régression, permettant de mieux mesurer cette efficacité.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retrieval of similar anatomical structures of brain MR images across patients would help the expert in diagnosis of diseases. In this paper, modified local binary pattern with ternary encoding called modified local ternary pattern (MOD-LTP) is introduced, which is more discriminant and less sensitive to noise in near-uniform regions, to locate slices belonging to the same level from the brain MR image database. The ternary encoding depends on a threshold, which is a user-specified one or calculated locally, based on the variance of the pixel intensities in each window. The variancebased local threshold makes the MOD-LTP more robust to noise and global illumination changes. The retrieval performance is shown to improve by taking region-based moment features of MODLTP and iteratively reweighting the moment features of MOD-LTP based on the user’s feedback. The average rank obtained using iterated and weighted moment features of MOD-LTP with a local variance-based threshold, is one to two times better than rotational invariant LBP (Unay, D., Ekin, A. and Jasinschi, R.S. (2010) Local structure-based region-of-interest retrieval in brain MR images. IEEE Trans. Inf. Technol. Biomed., 14, 897–903.) in retrieving the first 10 relevant images

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall attempt of the study was aimed to understand the microphytoplankton community composition and its variations along a highly complex and dynamic marine ecosystem, the northern Arabian Sea. The data generated provides a first of its kind knowledge on the major primary producers of the region. There appears significant response among the microphytoplankton community structure towards the variations in the hydrographic conditions during the winter monsoon period. Interannually, variations were observed within the microphytoplankton community associated with the variability in temperature patterns and the intensity of convective mixing. Changing bloom pattern and dominating species among the phytoplankton community open new frontiers and vistas towards more intense study on the biological responses towards physical processes. The production of large amount of organic matter as a result of intense blooming of Noctiluca as well as diatoms aggregations augment the particulate organic substances in these ecosystem. This definitely influences the carbon dynamics of the northern Arabian Sea. Detailed investigations based on time series as well as trophodynamic studies are necessary to elucidate the carbon flux and associated impacts of winter-spring blooms in NEAS. Arabian sea is considered as one among the hotspot for carbon dynamics and the pioneering records on the major primary producers fuels carbon based export production studies and provides a platform for future research. Moreover upcoming researches based on satellite based remote sensing on productivity patterns utilizes these insitu observations and taxonomic data sets of phytoplankton for validation of bloom specific algorithm development and its implementation. Furthermore Saurashtra coast is considered as a major fishing zone of Indian EEZ. The studies on the phytoplankton in these regions provide valuable raw data for fishery prediction models and identifying fishing zones. With the Summary and Conclusion 177 baseline data obtained further trophodynamic studies can be initiated in the complex productive North Eastern Arabian Seas (NEAS) ecosystem that is still remaining unexplored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a probability model, the mixture of trees that can account for sparse, dynamically changing dependence relationships. We present a family of efficient algorithms that use EMand the Minimum Spanning Tree algorithm to find the ML and MAP mixtureof trees for a variety of priors, including the Dirichlet and the MDL priors.