987 resultados para LASER PULSE REPETITION RATE
Resumo:
We experimentally demonstrate pabively Q-switched erbium-doped fiber laser (EDFL) operation using a saturable absorber (SA) based on Fe3O4 nanoparticles (FONPs). As a type of transition metal oxide, the FONPs have a large nonlinear optical response and fast response time. The FONPbased SA pobebes a modulation depth of 8.2% and nonsaturable absorption of 56.6%. Stable pabively Q-switched EDFL pulses with an output pulse energy of 23.76 nJ, a repetition rate of 33.3 kHz, and a pulse width of 3.2 μs were achieved when the input pump power was 110mW. The laser features a low threshold pump power of > 15mW.
Resumo:
At the level of fundamental research, fibre lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes, while at the applied research level, pulses with different and optimised features – e.g., in terms of pulse duration, temporal and/or spectral shape, energy, repetition rate and emission bandwidth – are sought with the general constraint of developing efficient cavity architectures. In this work, we review our recent progress on the realisation of pulse shaping in passively- mode-locked fibre lasers by inclusion of an amplitude and phase spectral filter into the laser cavity. We present a fibre laser design in which pulse shaping occurs through filtering of a spectrally nonlinearly broadened pulse in the cavity. This strategy of pulse shaping is illustrated through the numerical demonstration of the laser operation in different pulse-generation regimes, including parabolic, flattop and triangular waveform generations, depending on the amplitude profile of the in-cavity spectral filter [1]. As an application of this general approach, we show that the use of an in-cavity flat-top spectral filter makes it possible to directly generate sinc-shaped Nyquist pulses of high quality and of a widely tunable bandwidth from the laser [2]. We also report on a recently-developed versatile erbium-doped fibre laser, in which conventional soliton, dispersion-managed soliton (stretched-pulse) and dissipative soliton mode-locking regimes can be selectively and reliably targeted by programming different group-velocity dispersion profiles and bandwidths on an in-cavity programmable filter [3]. Further, we report on our recent results on the passive mode locking of a Raman fibre laser by a recently predicted new type of parametric instability – the dissipative Faraday instability [4], where spatially periodic zig-zag modulation of spectrally dependent losses can lead to pattern formation in the temporal domain. High-order harmonic mode locking is achieved in a very simple experimental configuration, with the laser cavity including an optical fibre and two chirped fibre Bragg gratings, and no additional mode-locking elements. The results not only open up new possibilities for the design of mode-locked lasers, but extend beyond fibre optics to other fields of physics and engineering. References [1] S. Boscolo, C. Finot, H. Karakuzu, P. Petropoulos, “Pulse shaping in mode-locked fiber laser by in-cavity spectral filter,” Opt. Lett., vol. 39, pp. 438–441, 2014. [2] S. Boscolo, C. Finot, S. K. Turitsyn, “Bandwidth programmable optical Nyquist pulse generation in passively mode-locked fiber laser,” IEEE Photon. J., vol. 7, 7802008(8), 2015. [3] J. Peng, S. Boscolo, “Filter-based dispersion-managed versatile ultrafast fibre laser,” Sci. Rep., 2016, In press. [4] A. M. Perego, N. Tarasov, D. V. Churkin, S. K. Turitsyn, K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett., vol. 116, 028701, 2016.
Resumo:
We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8km to generate a Q-switching pulse train operating at 1560.2 nm. A 7.7-km-long dispersion compensating fiber with 584 ps·nm?1km?1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395mW to 422mW, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03 μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422mW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.
Resumo:
The hybrid action of quantum-dot saturable absorber and Kerr-lens mode locking in a diode-pumped Yb:KGW laser was demonstrated. Using a quantum-dot saturable absorber with a 0.7% (0.5%) modulation depth, the mode-locked laser delivered 90 fs (93 fs) pulses with 3.2 W (2.9 W) of average power at the repetition rate of 77 MHz, corresponding to 462 kW (406 kW) of peak power and 41 nJ (38 nJ) of pulse energy. To the best of our knowledge, this represents the highest average and peak powers generated to date from quantum-dot saturable absorber-based mode-locked lasers.
Resumo:
We demonstrate an all-fibre erbium doped fibre laser mode-locked by using an intracavity 45°-Tilted Fibre Grating as a polarization element. The laser produces soliton-like pulses with ~600fs pulse duration and ~1nJ output energy at a repetition rate of 10.34MHz. © 2010 Optical Society of America.
Resumo:
We report a two-stage diode-pumped Er-doped fiber amplifier operating at the wavelength of 1550 nm at the repetition rate of 10-100 kHz with an average output power of up to 10 W. The first stage comprising Er-doped fiber was core-pumped at the wavelength of 1480 nm, whereas the second stage comprising double-clad Er/Yb-doped fiber was clad-pumped at the wavelength of 975 nm. The estimated peak power for the 0.4-nm full-width at half-maximum laser emission at the wavelength of 1550 nm exceeded 4-kW level. The initial 100-ns seed diode laser pulse was compressed to 3.5 ns as a result of the 34-dB total amplification. The observed 30-fold efficient pulse compression reveals a promising new nonlinear optical technique for the generation of high power short pulses for applications in eye-safe ranging and micromachining.
Resumo:
Objective: The aim of this study was to assess by atomic force microscopy (AFM) the effect of Er,Cr:YSGG laser application on the surface microtopography of radicular dentin. Background: Lasers have been used for various purposes in dentistry, where they are clinically effective when used in an appropriate manner. The Er, Cr: YSGG laser can be used for caries prevention when settings are below the ablation threshold. Materials and Methods: Four specimens of bovine dentin were irradiated using an Er, Cr:YSGG laser (lambda = 2.78 mu m), at a repetition rate of 20 Hz, with a 750-mu m-diameter sapphire tip and energy density of 2.8 J/cm(2) (12.5 mJ/pulse). After irradiation, surface topography was analyzed by AFM using a Si probe in tapping mode. Quantitative and qualitative information concerning the arithmetic average roughness (Ra) and power spectral density analyses were obtained from central, intermediate, and peripheral areas of laser pulses and compared with data from nonirradiated samples. Results: Dentin Ra for different areas were as follows: central, 261.26 (+/- 21.65) nm; intermediate, 83.48 (+/- 6.34) nm; peripheral, 45.8 (+/- 13.47) nm; and nonirradiated, 35.18 (+/- 2.9) nm. The central region of laser pulses presented higher ablation of intertubular dentin, with about 340-760 nm height, while intermediate, peripheral, and nonirradiated regions presented no difference in height of peritubular and interperitubular dentin. Conclusion: According to these results, we can assume that even when used at a low-energy density parameter, Er, Cr: YSGG laser can significantly alter the microtopography of radicular dentin, which is an important characteristic to be considered when laser is used for clinical applications.
Resumo:
The intensive use of semiconductor devices enabled the development of a repetitive high-voltage pulse-generator topology from the dc voltage-multiplier (VM) concept. The proposed circuit is based on an odd VM-type circuit, where a number of dc capacitors share a common connection with different voltage ratings in each one, and the output voltage comes from a single capacitor. Standard VM rectifier and coupling diodes are used for charging the energy-storing capacitors, from an ac power supply, and two additional on/off semiconductors in each stage, to switch from the typical charging VM mode to a pulse mode with the dc energy-storing capacitors connected in series with the load. Results from a 2-kV experimental prototype with three stages, delivering a 10-mu s pulse with a 5-kHz repetition rate into a resistive load, are discussed. Additionally, the proposed circuit is compared against the solid-state Marx generator topology for the same peak input and output voltages.
Resumo:
The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm(-2)) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 +/- 0.2 J cm(-2) and the ablation rate achieved in the range 1 to 2 mu m/pulse for an average fluence of 3 J cm(-2). The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the beta-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material.
Resumo:
Sub-nanosecond bipolar high voltage pulses are a very important tool for food processing, medical treatment, waste water and exhaust gas processing. A Hybrid Modulator for sub-microsecond bipolar pulse generation, comprising an unipolar solid-state Marx generator connected to a load through a stack Blumlein system that produces bipolar pulses and further multiplies the pulse voltage amplitude, is presented. Experimental results from an assembled prototype show the generation of 1000 V amplitude bipolar pulses with 100 ns of pulse width and 1 kHz repetition rate.
Resumo:
U-Pb dating of zircons by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) is a widely used analytical technique in Earth Sciences. For U-Pb ages below 1 billion years (1 Ga), Pb-206/U-238 dates are usually used, showing the least bias by external parameters such as the presence of initial lead and its isotopic composition in the analysed mineral. Precision and accuracy of the Pb/U ratio are thus of highest importance in LA-ICPMS geochronology. We consider the evaluation of the statistical distribution of the sweep intensities based on goodness-of-fit tests in order to find a model probability distribution fitting the data to apply an appropriate formulation for the standard deviation. We then discuss three main methods to calculate the Pb/U intensity ratio and its uncertainty in the LA-ICPMS: (1) ratio-of-the-mean intensities method, (2) mean-of-the-intensity-ratios method and (3) intercept method. These methods apply different functions to the same raw intensity vs. time data to calculate the mean Pb/U intensity ratio. Thus, the calculated intensity ratio and its uncertainty depend on the method applied. We demonstrate that the accuracy and, conditionally, the precision of the ratio-of-the-mean intensities method are invariant to the intensity fluctuations and averaging related to the dwell time selection and off-line data transformation (averaging of several sweeps); we present a statistical approach how to calculate the uncertainty of this method for transient signals. We also show that the accuracy of methods (2) and (3) is influenced by the intensity fluctuations and averaging, and the extent of this influence can amount to tens of percentage points; we show that the uncertainty of these methods also depends on how the signal is averaged. Each of the above methods imposes requirements to the instrumentation. The ratio-of-the-mean intensities method is sufficiently accurate provided the laser induced fractionation between the beginning and the end of the signal is kept low and linear. We show, based on a comprehensive series of analyses with different ablation pit sizes, energy densities and repetition rates for a 193 nm ns-ablation system that such a fractionation behaviour requires using a low ablation speed (low energy density and low repetition rate). Overall, we conclude that the ratio-of-the-mean intensities method combined with low sampling rates is the most mathematically accurate among the existing data treatment methods for U-Pb zircon dating by sensitive sector field ICPMS.
Resumo:
PhotoAcoustic Imaging (PAI) is a branch in clinical and pre-clinical imaging, that refers to the techniques mapping acoustic signals caused by the absorption of the short laser pulse. This conversion of electromagnetic energy of the light to the mechanical (acoustic) energy is usually called photoacoustic effect. PAI, by combining optical excitation with acoustical detection, is able to preserve the diffraction limited spatial resolution. At the same time, the penetration depth is extended beyond the diffusive limit. The Laser-Scanning PhotoAcoustic Microscope system (LS-PAM) has been developed, that offers the axial resolution of 7.75 µm with the lateral resolution better than 10 µm. The first in vivo imaging experiments were carried out. Thus, in vivo label-free imaging of the mouse ear was performed. The principle possibility to image vessels located in deep layers of the mouse skin was shown. As well as that, a gold printing sample, vasculature of the Chick Chorioallantoic Membrane Assay, Drosophila larvae were imaged by PAI. During the experimental work, a totally new application of PAM was found, in which the acoustic waves, generated by incident light can be used for further imaging of another sample. In order to enhance the performance of the presented system two main recommendation can be offered. First, the current system should be transformed into reflection-mode setup system. Second, a more powerful source of light with the sufficient repetition rate should be introduced into the system.
Resumo:
A high power Nz laser of the double-Blumlein type having a modified gas flow system, electrode configuration, and discharge geometry with minimum inductance is described. By incorporating a triggere’d-pressurized spark gap switch, arc-free operation was achieved for a wide E/P range. The device gives a peak power in excess of 700 kW with a FWHM of 3 ns and an efficiency of 0.51%, which is remarkably high for a pulsed nitrogen laser system. The dependence of output power on parameters such as operating pressure, voltage, and repetition rate are discussed.
Resumo:
The authors apply the theory of photothermal lens formation and also that of pure optical nonlinearity to account for the phase modulation in a beam as it traverses a nonlinear medium. It is used to simultaneously determine the nonlinear optical refraction and the thermo-optic coefficient. They demonstrate this technique using some metal phthalocyanines dissolved in dimethyl sulfoxide, irradiated by a Q-switched Nd:YAG laser with 10 Hz repetition rate and a pulse width of 8 ns. The mechanism for reverse saturable absorption in these materials is also discussed.
Resumo:
El vello facial no deseado es un problema común en las mujeres, los tratamientos láser han mostrado efectividad para su manejo. Objetivo: Evaluar los resultados de la depilación láser en cara de las pacientes tratadas a largo plazo (20 sesiones o más ) luego de un seguimiento de 6 meses durante los años 1997 y 2012. Metodología: 55 mujeres que con tipo de piel II a V recibieron 20 o más sesiones de láser con seguimiento mayor a 6 meses posterior al la última sesión. Resultados: la edad promedio fue (32 ± 9,3 años), el 18,2 % presentaban SOP o Hiperandrogenismo el número de sesiones en cara fue de (30,84 ± 12,132), un promedio de disparos de (6,330 ± 7,804), los Kilojulios acumulados tuvieron un promedio de (126,5 ± 161,4) la fluencia promedio fue (18,5 ± 3,2 Julios/cm2), el láser de Alexandrita fue utilizado en el 98% de las pacientes. Se encontró cambios significativos entre el conteo inicial y el final de vello facial (484,9 ± 568.9 (med=300) vs. 103,33± 138,63 (med=60), p<0.001, Test de Wilcoxon). El 32.7% mostraron reducción > 90% (5,5% reducción del 100%). Conclusión : El tratamiento con de depilación con láser mostro una reducción significativa del vello facial, en mujeres mayores de 14 años con un tratamiento a largo plazo (20 sesiones o más), con una tasa de reducción mayor del 90% en 32.7% de las pacientes y un promedio de reducción del grupo de 79,36 ±15,51 %, similar a lo reportado en los diferentes estudios (77%).