596 resultados para LAGRANGE MULTIPLIERS
Resumo:
In an attempt to understand why the Greek economy is collapsing, this Commentary points out two key aspects that are often overlooked – the country’s large multiplier and a bad export performance. When combined with the need for a large fiscal adjustment, these factors help explain how fiscal consolidation in Greece has been associated with such a large drop in GDP.
Resumo:
Both the (5,3) counter and (2,2,3) counter multiplication techniques are investigated for the efficiency of their operation speed and the viability of the architectures when implemented in a fast bipolar ECL technology. The implementation of the counters in series-gated ECL and threshold logic are contrasted for speed, noise immunity and complexity, and are critically compared with the fastest practical design of a full-adder. A novel circuit technique to overcome the problems of needing high fan-in input weights in threshold circuits through the use of negative weighted inputs is presented. The authors conclude that a (2,2,3) counter based array multiplier implemented in series-gated ECL should enable a significant increase in speed over conventional full adder based array multipliers.
Resumo:
The authors compare various array multiplier architectures based on (p,q) counter circuits. The tradeoff in multiplier design is always between adding complexity and increasing speed. It is shown that by using a (2,2,3) counter cell it is possible to gain a significant increase in speed over a conventional full-adder, carry-save array based approach. The increase in complexity should be easily accommodated using modern emitter-coupled-logic processes.
Resumo:
We establish a general Lagrangian for the moral hazard problem which generalizes the well known first order approach (FOA). It requires that besides the multiplier of the first order condition, there exist multipliers for the second order condition and for the binding actions of the incentive compatibility constraint. Some examples show that our approach can be useful to treat the finite and infinite state space cases. One of the examples is solved by the second order approach. We also compare our Lagrangian with 1\1irrlees'.
Resumo:
We establish a general Lagrangian for the moral hazard problem which generalizes the well known first order approach (FOA). It requires that besides the multiplier of the first order condition, there exist multipliers for the second order condition and for the binding actions of the incentive compatibility constraint. Some examples show that our approach can be useful to treat the finite and infinite state space cases. One of the examples is solved by the second order approach. We also compare our Lagrangian with 1\1irrlees'.
Resumo:
This paper studies the behavior of fiscal multipliers in two different economic environments: complete markets and incomplete markets. Based on steady state analysis, output multipliers are found within a range between 0.49 and 0.66, when the markets are complete. Under incomplete markets, output multiplier was found in an interval between 0.75 and 0.94. These results indicates that the market structure, which reflects the degree of risk sharing and the intensity of the precautionary motive faced by individuals, plays a key role in determining the fiscal multipliers. In the second part of the paper, was performed an exercise to analyze the dynamic response of macroeconomic aggregates to an exogenous and unexpected rise in government spending financed by lump-sum taxes. In this case, impact output multipliers varies in a range between 0.64 and 0.68, under complete markets, and within 1.05 and 1.20 when markets are incomplete. The results found under incomplete markets are very close to that found on related literature which usually uses an econometric approach or calibrated/estimated New Keynesian models. These results shows that taking into account the deficiencies in the insurance mechanisms can be an interesting way to reconcile theoretical models with the results found on related current literature, without the need of ad-hoc assumptions relative to price stickness.
Resumo:
De nombreuses études sur l`utilisation pédagogique de l`histoire des mathématiques viennent a identifier les arguments qui sous-tiennent ces actions éducatives comme une façon d`aborder les mathématiques scolaires afin de mener les élèves à un apprentissage réflexif et significatif des mathématiques. Cherchant a vérifier, de manière pratique, comment ces relations entre histoire des mathématiques et l`enseignement des mathématiques peuvent se matérialiser sous la forme d`activités didactiques, nous avons effectué un sondage sur les oeuvres du mathématicien Joseph Louis Lagrange (1736-1813) et identifié le potentiel d`exploration éducatif, de l`oeuvre Leçons élémentaires sur les mathématiques données a l`École Normale en 1795, de cet mathématicien. L`objectif principal de notre étude était de faire des recherches sur le potentiel d`une oeuvre antique dédié à l`enseignement des mathématiques et de la considérer comme support conceptuel et didactique pour la création d`un modèle d`activités didactiques pour l`enseignement des mathématiques, dans la formation des enseignants de mathématiques et aussi en ce qui concerne l`apprentissage des mathématiques des élèves de l`école primaire. Nous avons fait une lecture, la traduction et l`ajout de notes et commentaires sur le travail et une recherche bibliographique sur la relation entre l`histoire des mathématiques et l`enseignement des mathématiques, de façon a comprendre les aspects conceptuels et didactiques pour l`élaboration d`um module activités didactiques pour l`enseignement des mathématiques basée sur certains chapitres du livre de Lagrange. À cette fin, l`oeuvre a été utilisé comme source primaire et a été étudié sous un fondement théorique appuyer sur les travaux des Institut de recherche sur l`enseignement des mathématiques IREM. Dans le module élaboré, les activités apportent les contenus dans une suite integrée à une logique de classe, à partir de la lecture directe des découpages du texte original, disposés entre les questions et les situations-problémes , historiquement mis en contexte avec la période et associés à des contenus spécifiques. Comme il s`agit d`une recherche basée sur l`exploitation de livres anciens, nous croyons que des modules d`activités basées sur des source primaires peuvent être utilisées comme un matériel pédagogique pour la formation des enseignants de mathématiques ainsi que pour les dernières années de l`école élémentaire, reformulées ou accrues d`autres questions telles l`intérêt de chaque enseignant qui l`utilise
Resumo:
In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.
Resumo:
In this work, the problem in the loads transport (in platforms or suspended by cables) it is considered. The system in subject is composed for mono-rail system and was modeled through the system: inverted pendulum, car and motor and the movement equations were obtained through the Lagrange equations. In the model, was considered the interaction among of the motor and system dynamics for several potencies motor, that is, the case studied is denominated a non-ideal periodic problem. The non-ideal periodic problem dynamics was analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, one was made it analyzes quantitative of the problem through the analysis of the Floquet multipliers. Finally, the non-ideal problem was controlled. The method that was used for analysis and control of non-ideal periodic systems is based on the Chebyshev polynomial expansion, in the Picard iterative method and in the Lyapunov-Floquet transformation (L-F trans formation). This method was presented recently in [3-9].
Resumo:
Pós-graduação em Educação Matemática - IGCE