968 resultados para L-CYSTEINE
Resumo:
Lung cancer is a leading cause of death in developed countries. Although smoking cessation is a primary strategy for preventing lung cancer, former smokers remain at high risk of cancer. Accordingly, there is a need to increase the efficacy of lung cancer prevention. Poor bioavailability is the main factor limiting the efficacy of chemopreventive agents. The aim of this study was to increase the efficacy of cancer chemopreventive agents by using lipid nanoparticles (NPs) as a carrier. This study evaluated the ability of lipid NPs to modify the pharmacodynamics of chemopreventive agents including N-acetyl-L-cysteine, phenethyl isothiocyanate and resveratrol (RES). The chemopreventive efficacy of these drugs was determined by evaluating their abilities to counteract cytotoxic damage (DNA fragmentation) induced by cigarette smoke condensate (CSC) and to activate protective apoptosis (annexin-V cytofluorimetric staining) in bronchial epithelial cells both in vitro and in ex vivo experiment in mice. NPs decreased the toxicity of RES and increased its ability to counteract CSC cytotoxicity. NPs significantly increased the ability of phenethyl isothiocyanate to attenuate CSC-induced DNA fragmentation at the highest tested dose. In contrast, this potentiating effect was observed at all tested doses of RES, NPs dramatically increasing RES-induced apoptosis in CSC-treated cells. These results provide evidence that NPs are highly effective at increasing the efficacy of lipophilic drugs (RES) but are not effective towards hydrophilic agents (N-acetyl-L-cysteine), which already possess remarkable bioavailability. Intermediate effects were observed for phenethyl isothiocyanate. These findings are relevant to the identification of cancer chemopreventive agents that would benefit from lipid NP delivery.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper describes the preparation, characterization, and use of poly (methylene blue) (PMB)-modified glassy carbon electrodes (GCE) (GCE-PMB) in the detection of the thiols L-cysteine (L-CySH) and N-acetyl cysteine (Acy), and the herbicide glyphosate (GLYP) in pH 5.3 aqueous solution. The polymer film prepared by electropolymerization showed different characteristics such as robustness, stability, and redox properties satisfactorily. The surface coverage concentration (Gamma) of PMB was found to be 7.90 x 10(-9) - mol cm(-2). Moreover, we observed strong adhesion of the polymer film to the electrode surface. The results using GCE-PMB as a sensor indicated that this modified electrode exhibited electrocatalytic activity toward the detection of thiols and glyphosate in 0.1 mol L-1 KO (pH 5.3). Meanwhile, strong adsorption of the analytes on the GCE-PMB electrodes was also observed. Otherwise, using a low concentration (1 x 10(-4) mol L-1) of L-cysteine and N-acetyl cysteine and 8.9 x 10(-6) mol L-1 of glyphosate, separately, it was possible to observe a well-defined electrochemical response, thus providing an opportunity to further understand the applicability of PMB as a sensor for amino acid-based molecules. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Hypertension is a disorder affecting millions worldwide, and is a leading cause of death and debilitation in the United States. It is widely accepted that during hypertension and other cardiovascular diseases the vasculature exhibits endothelial dysfunction; a deficit in the relaxatory ability of the vessel, attributed to a lack of nitric oxide (NO) bioavailability. Recently, the one electron redox variant of NO, nitroxyl anion (NO-) has emerged as an endothelium-derived relaxing factor (EDRF) and a candidate for endothelium-derived hyperpolarizing factor (EDRF). NO- is thought to exist protonated (HNO) in vivo, which would make this species more resistant to scavenging. However, no studies have investigated the role of this redox species during hypertension, and whether the vasculature loses the ability to relax to HNO. Thus, we hypothesize that aorta from angiotensin II (AngII)-hypertensive mice will exhibit a preserved relaxation response to Angeli's Salt, an HNO donor. Male C57B16 mice, aged 12-14 weeks were implanted with mini-osmotic pumps containing AngII (90 ng/min, 14 days plus high salt chow) or sham surgery. Aorta were excised, cleaned and used to perform functional studies in a myograph. We found that aorta from AngII-hypertensive mice exhibited a significant endothelial dysfunction as demonstrated by a decrease in acetylcholine (ACh)-mediated relaxation. However, vessels from hypertensive mice exhibited a preserved response to Angeli's Salt (AS), the HNO donor. To confirm that relaxation responses to HNO were maintained, concentration response curves (CRCs) to ACh were performed in the presence of scavengers to both NO and HNO (carboxy-PTIO and L-cys, resp.). We found that ACh-mediated relaxation responses were significantly decreased in aorta from sham and almost completely abolished in aorta from AngII-treated mice. Vessels incubated with L-cys exhibited a modest decrease in ACh-mediated relaxations responses. These data demonstrate that aorta from AngII-treated hypertensive mice exhibit a preserved relaxation response to AS, an HNO donor, regardless of a significant endothelial dysfunction. (C) 2011 Elsevier Ltd. All rights reserved,
Resumo:
The mycotoxin aflatoxin B1 (AFB1) is a carcinogenic food contaminant which is metabolically activated by epoxydation. The metabolism of mycotoxins via the mercapturate metabolic pathway was shown, in general, to lead to their detoxication. Mercapturic acids thus formed (S-substitued-N-acetyl-L-cysteines) may be accumulated in the kidney and either excreted in the urine or desacetylated by Acylase 1 (ACY1) to yield cysteine S-conjugates. To be toxic, the N-acetyl-L-cysteine-S-conjugates first have to undergo deacetylation by ACY 1. The specificity and rate of mercapturic acid deacetylation may determine the toxicity, however the exact deacetylation processes involved are not well known. The aim of this study was to investigate the role of ACY1 in the toxicity of some bioactive epoxides from Aflatoxin B1. We characterized the kinetic parameters of porcine kidney and human recombinant aminoacylase-1 towards some aromatic and aliphatic-derived mercapturates analogue of mycotoxin mercapturic acids and 3,4-epoxyprecocene, a bioactive epoxide derivated from aflatoxin. The deacetylation of mercapturated substrates was followed both by reverse phase HPLC and by TNBS method. Catalytic activity was discussed in a structure function relationship. Ours results indicate for the first time that aminoacylase-1 could play an important role in deacetylating mercapturate metabolites of aflatoxin analogues and this process may be in relation with their cyto- and nephrotoxicity in human. (C) 2012 Published by Elsevier Masson SAS.
Resumo:
Metallische Nanopartikel und ihre Oxide (z.B. ZnO NP, TiO2 NP und Fe2O3 NP) werden aufgrund ihrer chemischen und physikalischen Eigenschaften häufig als Additive in der Reifenproduktion, in Katalysatoren, Lebensmitteln, Arzneimitteln und Kosmetikprodukten verwendet. Künftig wird ein kontinuierlicher Anstieg der industriellen Anwendung (~ 1663 Tonnen im Jahr 2025) mit gesteigerter Freisetzung in die Umwelt erwartet, was zwangsläufig zu einer vermehrten Aufnahme über das respiratorische Epithel führt. Metalldampffieber ist als gesundheitsschädigender Effekt von Metalloxid-haltigen Aerosolen (z.B. ZnO) nach Inhalation bekannt. Immunreaktionen, wie beispielsweise Entzündungen, werden häufig mit der Entstehung von Sauerstoffradikalen (ROS) in Verbindung gebracht, die wiederum zu DNA-Schäden führen können. Drei mögliche Ursachen der Genotoxität werden angenommen: direkte Interaktion von Nanopartikeln mit intrazellulären Strukturen, Interaktion von Ionen dissoziierter Partikel mit intrazellulären Strukturen sowie die Entstehung von ROS initiiert durch Partikel oder Ionen.rnDie vorliegende Studie befasst sich mit den Mechanismen der Genotoxizität von ZnO Nanopartikeln (ZnO NP), als Beispiel für metallische Nanopartikel, im respiratorischen Epithel. In der Studie wurde gezielt die intrazelluläre Aufnahme und Verteilung von ZnO NP, deren Toxizität, deren DNA schädigendes Potential sowie die Aktivierung der DNA damage response (DDR) analysiert.rnEs konnten kaum internalisierte ZnO NP mittels TEM detektiert werden. Innerhalb der ersten Sekunden nach Behandlung mit ZnO NP wurde spektrofluorometrisch ein starker Anstieg der intrazellulären Zn2+ Konzentration gemessen. In unbehandelten Zellen war Zn2+ in granulären Strukturen lokalisiert. Die Behandlung mit ZnO NP führte zu einer Akkumulation von Zn2+ in diesen Strukturen. Im zeitlichen Verlauf verlagerten sich die Zn2+-Ionen in das Zytoplasma, sowie in Zellkerne und Mitochondrien. Es wurde keine Kolokalisation von Zn2+ mit den frühen Endosomen und dem endoplasmatischen Retikulum beobachtet. Die Vorbehandlung der Zellen mit Diethylen-triaminpentaessigsäure (DTPA), als extrazellulärem Komplexbildner, verhinderte den intrazellulären Anstieg von Zn2+ nach Behandlung mit den Partikeln.rnDie Behandlung mit ZnO NP resultierte in einer zeit- und dosisabhängigen Reduktion der zellulären Viabilität, während die intrazelluläre ROS-Konzentrationen in den ersten 30 min leicht und anschließend kontinuierlich bis zum Ende der Messung anstiegen. Außerdem verringerte sich das mitochondriale Membranpotential, während sich die Anzahl der frühapoptotischen Zellen in einer zeitabhängigen Weise erhöhte. rnDNA Doppelstrangbrüche (DNA DSB) wurden mittels Immunfluoreszenz-Färbung der γH2A.X foci sichtbar gemacht und konnten nach Behandlung mit ZnO NP detektiert werden. Die Vorbehandlung mit dem Radikalfänger N-Acetyl-L-Cytein (NAC) resultierte in stark reduzierten intrazellulären ROS-Konzentrationen sowie wenigen DNA DSB. Die DNA Schädigung wurde durch Vorbehandlung mit DTPA ganz verhindert.rnDie Aktivierung der DDR wurde durch die Analyse von ATM, ATR, Chk1, Chk2, p53 und p21 mittels Western Blot und ELISA nach Behandlung mit ZnO NP überprüft. Der ATR/Chk1 Signalweg wurde durch ZnO NP nicht aktiviert. Die Komplexierung von Zn2+ resultierte in einer verminderten ATM/Chk2 Signalwegaktivierung. Es zeigte sich, dass das Abfangen von ROS keinen Effekt auf die ATM/Chk2 Signalwegaktivierung hatte.rnZusammengefasst wurde festgestellt, dass die Exposition mit ZnO NP in der Entstehung von ROS, reduzierter Viabilität und vermindertem mitochondrialem Membranpotential resultiert, sowie zeitabhängig eine frühe Apoptose initiiert. ZnO NP dissoziierten extrazellulär und wurden schnell als Zn2+ über unbekannte Mechanismen internalisiert. Die Zn2+-Ionen wurden im Zytoplasma, sowie besonders in den Mitochondrien und dem Zellkern, akkumuliert. Die DDR Signalgebung wurde durch ZnO NP aktiviert, jedoch nicht durch NAC inhibiert. Es wurde gezeigt, dass DTPA die DDR Aktivierung komplett inhibierte. Die Behandlung mit ZnO NP induzierte DNA DSB. Die Inhibition von ROS reduzierte die DNA DSB und die Komplexierung der Zn2+ verhinderte die Entstehung von DNA DSB.rnDiese Daten sprechen für die Dissoziation der Partikel und die hierbei freigesetzten Zn2+ als Hauptmediator der Genotoxizität metallischer Nanopartikel. rn
Resumo:
Breast cancer is the most common malignancy among women in the world. Its 5-year survival rate ranges from 23.4% in patients with stage IV to 98% in stage I disease, highlighting the importance of early detection and diagnosis. 18F-2-Fluoro-2-deoxy-glucose (18F-FDG), using positron emission tomography (PET), is the most common functional imaging tool for breast cancer diagnosis currently. Unfortunately, 18F-FDG-PET has several limitations such as poorly differentiating tumor tissues from inflammatory and normal brain tissues. Therefore, 18F-labeled amino acid-based radiotracers have been reported as an alternative, which is based on the fact that tumor cells uptake and consume more amino acids to sustain their uncontrolled growth. Among those radiotracers, 18F-labeled tyrosine and its derivatives have shown high tumor uptake and great ability to differentiate tumor tissue from inflammatory sites in brain tumors and squamous cell carcinoma. They enter the tumor cells via L-type amino acid transporters (LAT), which were reported to be highly expressed in many cancer cell lines and correlate positively with tumor growth. Nevertheless, the low radiosynthesis yield and demand of an on-site cyclotron limit the use of 18F-labeled tyrosine analogues. In this study, four Technetium-99m (99mTc) labeled tyrosine/ AMT (α-methyl tyrosine)-based radiotracers were successfully synthesized and evaluated for their potentials in breast cancer imaging. In order to radiolabel tyrosine and AMT, the chelators N,N’-ethylene-di-L-cysteine (EC) and 1,4,8,11-tetra-azacyclotetradecane (N4 cyclam) were selected to coordinate 99mTc. These chelators have been reported to provide stable chelation ability with 99mTc. By using the chelator technology, the same target ligand could be labeled with different radioisotopes for various imaging modalities for tumor diagnosis, or for internal radionuclide therapy in future. Based on the in vitro and in vivo evaluation using the rat mammary tumor models, 99mTc-EC-AMT is considered as the most suitable radiotracer for breast cancer imaging overall, however, 99mTc-EC-Tyrosine will be more preferred for differential diagnosis of tumor from inflammation.
Resumo:
The effect of externally applied l-cysteine and glutathione (GSH) on ATP sulphurylase and adenosine 5′-phosphosulphate reductase (APR), two key enzymes of assimilatory sulphate reduction, was examined in Arabidopsis thaliana root cultures. Addition of increasing l-cysteine to the nutrient solution increased internal cysteine, γ-glutamylcysteine and GSH concentrations, and decreased APR mRNA, protein and extractable activity. An effect on APR could already be detected at 0.2 mm l-cysteine, whereas ATP sulphurylase was significantly affected only at 2 mm l-cysteine. APR mRNA, protein and activity were also decreased by GSH at 0.2 mm and higher concentrations. In the presence of l-buthionine-S, R-sulphoximine (BSO), an inhibitor of GSH synthesis, 0.2 mm l-cysteine had no effect on APR activity, indicating that GSH formed from cysteine was the regulating substance. Simultaneous addition of BSO and 0.5 mm GSH to the culture medium decreased APR mRNA, enzyme protein and activity. ATP sulphurylase activity was not affected by this treatment. Tracer experiments using 35SO42– in the presence of 0.5 mm l-cysteine or GSH showed that both thiols decreased sulphate uptake, APR activity and the flux of label into cysteine, GSH and protein, but had no effect on the activity of all other enzymes of assimilatory sulphate reduction and serine acetyltransferase. These results are consistent with the hypothesis that thiols regulate the flux through sulphate assimilation at the uptake and the APR step. Analysis of radioactive labelling indicates that the flux control coefficient of APR is more than 0.5 for the intracellular pathway of sulphate assimilation. This analysis also shows that the uptake of external sulphate is inhibited by GSH to a greater extent than the flux through the pathway, and that the flux control coefficient of APR for the pathway, including the transport step, is proportionately less, with a significant share of the control exerted by the transport step.
Resumo:
The hydrolysis and the reactivity of two dinuclear p-cymene ruthenium monothiolato complexes, [(η6-p-MeC6H4Pri)2Ru2Cl2(µ-Cl)(µ-S-m-9-B10C2H11)] (1) and [(η6-p-MeC6H4Pri)2¬Ru2Cl2(µ-Cl)¬(µ-S¬CH2-p-C6H4-NO2)] (2), and of two dinuclear p-cymene ruthenium dithiolato complexes, [(η6-p-MeC6H4Pri)2Ru2(µ-SCH2CH2Ph)2Cl2] (3) and [(η6-p-Me¬C6H4¬Pri)2¬Ru2(S¬CH2¬C6H4-p-O¬Me)2¬Cl2] (4) towards amino acids, nucleotides, and a single-stranded DNA dodecamer were studied using NMR and mass spectrometry. In aqueous solutions at 37 °C, the monothiolato com¬plexes 1 and 2 undergo rapid hydrolysis, irrespective of the pH value, the predominant species in D2O/acetone-d6 solution at equilibrium being the neutral hydroxo complexes [(η6-p-Me¬C6H4¬Pri)2Ru2(OD)2(µ-OD)(µ-SR)]. The dithiolato complexes 3 and 4 are stable in water under acidic conditions, but undergo slow hydrolysis under neutral and basic conditions. In both cases, the cationic hydroxo complexes [(η6-p-MeC6H4Pri)2Ru2(µ-SR)2¬(OD)¬(CD3CN)]+ are the only spe¬cies observed in D2O/CD3CN at equilibrium. Surprisingly, no adducts are observed upon addition of an excess of L-methionine or L-histidine to the aqueous solutions of the complexes. Upon addition of an excess of L-cysteine, on the other hand, 1 and 2 form the unusual cationic trithiolato complexes [(η6-p-MeC6H4Pri)2¬Ru2{µ-SCH2CH(NH2)COOH}2(µ-SR)]+ containing two bridging cysteinato li¬gands, while 3 and 4 yield cationic trithiolato complexes [(η6-p-MeC6H4Pri)2Ru2[µ-SCH2CH¬(NH2)COOH](µ-SR)2]+ containing one bridging cysteinato ligand. A representative of catio¬nic trithiolato complexes containing a cysteinato bridge of this type, [(η6-p-MeC6H4Pri)2¬Ru2[µ-S¬CH2CH(NH2)COOH](µ-SCH2-p-C6H4-But)2]+ (6) could be synthesised from the di¬thiolato complex [(η6-p-Me¬C6H4¬Pri)2-Ru2(S¬CH2¬C6H4-p-But)2Cl2] (5), isolated as the tetra¬fluo¬ro¬borate salt and fully characterised. Moreover, the mono- and dithiolato complexes 1 - 4 are inert toward nucleotides and DNA, suggesting that DNA is not a target of cytotoxic thiolato-bridged arene ruthenium complexes. In contrast to the trithiolato complexes, monothiolato and dithio¬lato complexes hydrolyse and react with L-cysteine. These results may have im¬portant implications for the mode of action of thiolato-bridged dinuclear arene ruthenium drug candidates, and suggest that their modes of action are different to those of other arene ruthenium complexes.
Resumo:
The clinical application of chemopreventive agents is expected to prevent the appearance of cancer by arresting carcinogenesis or reversing it in the precancerous stages. The hypothesis of the present investigations was that chemopreventive agents (retinoids and antioxidant vitamins) may counteract the clastogenic effects of bleomycin in vitro in both lymphoblastoid cell lines and primary lymphocyte cultures and that a similar phenomenon can be detected in lymphocytes from individuals treated with 13-cis-retinoic acid. The efficacy of 13-cis-retinoic acid, n-(4-hydroxyphenyl)-retinamide, ascorbic acid, n-acetyl-l-cysteine, alpha-tocopherol, and alpha-tocopherol-acid succinate was tested against bleomycin-induced chromosomal breakage.^ The results provided direct evidence of the concentration-related protective effects of these agents against bleomycin-induced clastogenicity in cultures of human lymphoblastoid cell lines in vitro. Similar anticlastogenic protection was demonstrated with 13-cis-retinoic acid, ascorbic acid, n-acetyl-l-cysteine, and alpha-tocopherol-acid succinate in primary lymphocyte cultures in vitro. The in vitro anticlastogenic effect of 13-cis-retinoic acid was also demonstrated in lymphocyte cultures from peripheral blood samples from patients treated with this retinoid.^ An important consideration is that the concentrations used in the present investigations are comparable to those achieved in clinical situations.^ The in vitro anticlastogenic effect of these retinoids and antioxidants may constitute an important element of their chemopreventive properties. The results corroborate the hypothesis that these compounds may be effective in clinical chemoprevention trials. The bleomycin-assay may also be used as a short-term test to evaluate the antimutagenic effects of various agents. ^
The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin
Resumo:
Angiostatin, a potent naturally occurring inhibitor of angiogenesis and growth of tumor metastases, is generated by cancer-mediated proteolysis of plasminogen. Human prostate carcinoma cells (PC-3) release enzymatic activity that converts plasminogen to angiostatin. We have now identified two components released by PC-3 cells, urokinase (uPA) and free sulfhydryl donors (FSDs), that are sufficient for angiostatin generation. Furthermore, in a defined cell-free system, plasminogen activators [uPA, tissue-type plasminogen activator (tPA), or streptokinase], in combination with one of a series of FSDs (N-acetyl-l-cysteine, d-penicillamine, captopril, l-cysteine, or reduced glutathione] generate angiostatin from plasminogen. An essential role of plasmin catalytic activity for angiostatin generation was identified by using recombinant mutant plasminogens as substrates. The wild-type recombinant plasminogen was converted to angiostatin in the setting of uPA/FSD; however, a plasminogen activation site mutant and a catalytically inactive mutant failed to generate angiostatin. Cell-free derived angiostatin inhibited angiogenesis in vitro and in vivo and suppressed the growth of Lewis lung carcinoma metastases. These findings define a direct mechanism for cancer-cell-mediated angiostatin generation and permit large-scale production of bioactive angiostatin for investigation and potential therapeutic application.
Resumo:
Diets high in fat are associated with an increased risk of prostate cancer, although the molecular mechanism is still unknown. We have previously reported that arachidonic acid, an omega-6 fatty acid common in the Western diet, stimulates proliferation of prostate cancer cells through production of the 5-lipoxygenase metabolite, 5-HETE (5-hydroxyeicosatetraenoic acid). We now show that 5-HETE is also a potent survival factor for human prostate cancer cells. These cells constitutively produce 5-HETE in serum-free medium with no added stimulus. Exogenous arachidonate markedly increases the production of 5-HETE. Inhibition of 5-lipoxygenase by MK886 completely blocks 5-HETE production and induces massive apoptosis in both hormone-responsive (LNCaP) and -nonresponsive (PC3) human prostate cancer cells. This cell death is very rapid: cells treated with MK886 showed mitochondrial permeability transition between 30 and 60 min, externalization of phosphatidylserine within 2 hr, and degradation of DNA to nucleosomal subunits beginning within 2–4 hr posttreatment. Cell death was effectively blocked by the thiol antioxidant, N-acetyl-l-cysteine, but not by androgen, a powerful survival factor for prostate cancer cells. Apoptosis was specific for 5-lipoxygenase—programmed cell death was not observed with inhibitors of 12-lipoxygenase, cyclooxygenase, or cytochrome P450 pathways of arachidonic acid metabolism. Exogenous 5-HETE protects these cells from apoptosis induced by 5-lipoxygenase inhibitors, confirming a critical role of 5-lipoxygenase activity in the survival of these cells. These findings provide a possible molecular mechanism by which dietary fat may influence the progression of prostate cancer.
Resumo:
Continuous axenic culture of Pneumocystis carinii has been achieved. A culture vessel is used that allows for frequent medium exchange without disturbance of organisms that grow attached to a collagen-coated porous membrane. The growth medium is based on Minimal Essential Medium with Earle’s salt supplemented with S-adenosyl-l-methionine, putrescine, ferric pyrophosphate, N-acetyl glucosamine, putrescine, p-aminobenzoic acid, l-cysteine and l-glutamine, and horse serum. Incubation is in room air at 31°C. The pH of the medium begins at 8.8 and rises to ≈9 as the cells grow. Doubling times calculated from growth curves obtained from cultures inoculated at moderate densities ranged from 35 to 65 hours. With a low-density inoculum, the doubling time is reduced to 19 hours. The morphology of cultured organisms in stained smears and in transmission electron micrographs is that of P. carinii, and P. carinii-specific mAbs label the cultured material. Cultured organisms are infective for immunosuppressed rats and can be stored frozen and used to reinitiate culture.
Resumo:
Isoprenylation is a posttranslational modification that is believed to be necessary, but not sufficient, for the efficient association of numerous eukaryotic cell proteins with membranes. Additional modifications have been shown to be required for proper intracellular targeting and function of certain isoprenylated proteins in mammalian and yeast cells. Although protein isoprenylation has been demonstrated in plants, postisoprenylation processing of plant proteins has not been described. Here we demonstrate that cultured tobacco (Nicotiana tabacum cv Bright Yellow-2) cells contain farnesylcysteine and geranylgeranylcysteine α-carboxyl methyltransferase activities with apparent Michaelis constants of 73 and 21 μm for N-acetyl-S-trans,trans-farnesyl-l-cysteine and N-acetyl-S-all-trans-geranylgeranyl-l-cysteine, respectively. Furthermore, competition analysis indicates that the same enzyme is responsible for both activities. These results suggest that α-carboxyl methylation is a step in the maturation of isoprenylated proteins in plants.
Resumo:
Dihydrodipicolinate synthase (DHPS; EC 4.2.1.52) catalyzes the first step in biosynthesis of lysine in plants and bacteria. DHPS in plants is highly sensitive to end-product inhibition by lysine and, therefore, has an important role in regulating metabolite flux into lysine. To better understand the feedback inhibition properties of the plant enzyme, we transformed a maize cDNA for lysine-sensitive DHPS into an Escherichia coli strain lacking DHPS activity. Cells were mutagenized with ethylmethanesulfonate, and potential DHPS mutants were selected by growth on minimal medium containing the inhibitory lysine analogue S-2-aminoethyl-L-cysteine. DHPS assays identified surviving colonies expressing lysine-insensitive DHPS activity. Ten single-base-pair mutations were identified in the maize DHPS cDNA sequence; these mutations were specific to one of three amino acid residues (amino acids 157, 162, and 166) localized within a short region of the polypeptide. No other mutations were present in the remaining DHPS cDNA sequence, indicating that altering only one of the three residues suffices to eliminate lysine inhibition of maize DHPS. Identification of these specific mutations that change the highly sensitive maize DHPS to a lysine-insensitive isoform will help resolve the lysine-binding mechanism and the resultant conformational changes involved in inhibition of DHPS activity. The plant-derived mutant DHPS genes may also be used to improve nutritional quality of maize or other cereal grains that have inadequate lysine content when fed to animals such as poultry, swine, or humans.