893 resultados para Knowledge base systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Una de las actuaciones posibles para la gestión de los residuos sólidos urbanos es la valorización energética, es decir la incineración con recuperación de energía. Sin embargo es muy importante controlar adecuadamente el proceso de incineración para evitar en lo posible la liberación de sustancias contaminantes a la atmósfera que puedan ocasionar problemas de contaminación industrial.Conseguir que tanto el proceso de incineración como el tratamiento de los gases se realice en condiciones óptimas presupone tener un buen conocimiento de las dependencias entre las variables de proceso. Se precisan métodos adecuados de medida de las variables más importantes y tratar los valores medidos con modelos adecuados para transformarlos en magnitudes de mando. Un modelo clásico para el control parece poco prometedor en este caso debido a la complejidad de los procesos, la falta de descripción cuantitativa y la necesidad de hacer los cálculos en tiempo real. Esto sólo se puede conseguir con la ayuda de las modernas técnicas de proceso de datos y métodos informáticos, tales como el empleo de técnicas de simulación, modelos matemáticos, sistemas basados en el conocimiento e interfases inteligentes. En [Ono, 1989] se describe un sistema de control basado en la lógica difusa aplicado al campo de la incineración de residuos urbanos. En el centro de investigación FZK de Karslruhe se están desarrollando aplicaciones que combinan la lógica difusa con las redes neuronales [Jaeschke, Keller, 1994] para el control de la planta piloto de incineración de residuos TAMARA. En esta tesis se plantea la aplicación de un método de adquisición de conocimiento para el control de sistemas complejos inspirado en el comportamiento humano. Cuando nos encontramos ante una situación desconocida al principio no sabemos como actuar, salvo por la extrapolación de experiencias anteriores que puedan ser útiles. Aplicando procedimientos de prueba y error, refuerzo de hipótesis, etc., vamos adquiriendo y refinando el conocimiento, y elaborando un modelo mental. Podemos diseñar un método análogo, que pueda ser implementado en un sistema informático, mediante el empleo de técnicas de Inteligencia Artificial.Así, en un proceso complejo muchas veces disponemos de un conjunto de datos del proceso que a priori no nos dan información suficientemente estructurada para que nos sea útil. Para la adquisición de conocimiento pasamos por una serie de etapas: - Hacemos una primera selección de cuales son las variables que nos interesa conocer. - Estado del sistema. En primer lugar podemos empezar por aplicar técnicas de clasificación (aprendizaje no supervisado) para agrupar los datos y obtener una representación del estado de la planta. Es posible establecer una clasificación, pero normalmente casi todos los datos están en una sola clase, que corresponde a la operación normal. Hecho esto y para refinar el conocimiento utilizamos métodos estadísticos clásicos para buscar correlaciones entre variables (análisis de componentes principales) y así poder simplificar y reducir la lista de variables. - Análisis de las señales. Para analizar y clasificar las señales (por ejemplo la temperatura del horno) es posible utilizar métodos capaces de describir mejor el comportamiento no lineal del sistema, como las redes neuronales. Otro paso más consiste en establecer relaciones causales entre las variables. Para ello nos sirven de ayuda los modelos analíticos - Como resultado final del proceso se pasa al diseño del sistema basado en el conocimiento. El objetivo principal es aplicar el método al caso concreto del control de una planta de tratamiento de residuos sólidos urbanos por valorización energética. En primer lugar, en el capítulo 2 Los residuos sólidos urbanos, se trata el problema global de la gestión de los residuos, dando una visión general de las diferentes alternativas existentes, y de la situación nacional e internacional en la actualidad. Se analiza con mayor detalle la problemática de la incineración de los residuos, poniendo especial interés en aquellas características de los residuos que tienen mayor importancia de cara al proceso de combustión.En el capítulo 3, Descripción del proceso, se hace una descripción general del proceso de incineración y de los distintos elementos de una planta incineradora: desde la recepción y almacenamiento de los residuos, pasando por los distintos tipos de hornos y las exigencias de los códigos de buena práctica de combustión, el sistema de aire de combustión y el sistema de humos. Se presentan también los distintos sistemas de depuración de los gases de combustión, y finalmente el sistema de evacuación de cenizas y escorias.El capítulo 4, La planta de tratamiento de residuos sólidos urbanos de Girona, describe los principales sistemas de la planta incineradora de Girona: la alimentación de residuos, el tipo de horno, el sistema de recuperación de energía, y el sistema de depuración de los gases de combustión Se describe también el sistema de control, la operación, los datos de funcionamiento de la planta, la instrumentación y las variables que son de interés para el control del proceso de combustión.En el capítulo 5, Técnicas utilizadas, se proporciona una visión global de los sistemas basados en el conocimiento y de los sistemas expertos. Se explican las diferentes técnicas utilizadas: redes neuronales, sistemas de clasificación, modelos cualitativos, y sistemas expertos, ilustradas con algunos ejemplos de aplicación.Con respecto a los sistemas basados en el conocimiento se analizan en primer lugar las condiciones para su aplicabilidad, y las formas de representación del conocimiento. A continuación se describen las distintas formas de razonamiento: redes neuronales, sistemas expertos y lógica difusa, y se realiza una comparación entre ellas. Se presenta una aplicación de las redes neuronales al análisis de series temporales de temperatura.Se trata también la problemática del análisis de los datos de operación mediante técnicas estadísticas y el empleo de técnicas de clasificación. Otro apartado está dedicado a los distintos tipos de modelos, incluyendo una discusión de los modelos cualitativos.Se describe el sistema de diseño asistido por ordenador para el diseño de sistemas de supervisión CASSD que se utiliza en esta tesis, y las herramientas de análisis para obtener información cualitativa del comportamiento del proceso: Abstractores y ALCMEN. Se incluye un ejemplo de aplicación de estas técnicas para hallar las relaciones entre la temperatura y las acciones del operador. Finalmente se analizan las principales características de los sistemas expertos en general, y del sistema experto CEES 2.0 que también forma parte del sistema CASSD que se ha utilizado.El capítulo 6, Resultados, muestra los resultados obtenidos mediante la aplicación de las diferentes técnicas, redes neuronales, clasificación, el desarrollo de la modelización del proceso de combustión, y la generación de reglas. Dentro del apartado de análisis de datos se emplea una red neuronal para la clasificación de una señal de temperatura. También se describe la utilización del método LINNEO+ para la clasificación de los estados de operación de la planta.En el apartado dedicado a la modelización se desarrolla un modelo de combustión que sirve de base para analizar el comportamiento del horno en régimen estacionario y dinámico. Se define un parámetro, la superficie de llama, relacionado con la extensión del fuego en la parrilla. Mediante un modelo linealizado se analiza la respuesta dinámica del proceso de incineración. Luego se pasa a la definición de relaciones cualitativas entre las variables que se utilizan en la elaboración de un modelo cualitativo. A continuación se desarrolla un nuevo modelo cualitativo, tomando como base el modelo dinámico analítico.Finalmente se aborda el desarrollo de la base de conocimiento del sistema experto, mediante la generación de reglas En el capítulo 7, Sistema de control de una planta incineradora, se analizan los objetivos de un sistema de control de una planta incineradora, su diseño e implementación. Se describen los objetivos básicos del sistema de control de la combustión, su configuración y la implementación en Matlab/Simulink utilizando las distintas herramientas que se han desarrollado en el capítulo anterior.Por último para mostrar como pueden aplicarse los distintos métodos desarrollados en esta tesis se construye un sistema experto para mantener constante la temperatura del horno actuando sobre la alimentación de residuos.Finalmente en el capítulo Conclusiones, se presentan las conclusiones y resultados de esta tesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The activated sludge and anaerobic digestion processes have been modelled in widely accepted models. Nevertheless, these models still have limitations when describing operational problems of microbiological origin. The aim of this thesis is to develop a knowledge-based model to simulate risk of plant-wide operational problems of microbiological origin.For the risk model heuristic knowledge from experts and literature was implemented in a rule-based system. Using fuzzy logic, the system can infer a risk index for the main operational problems of microbiological origin (i.e. filamentous bulking, biological foaming, rising sludge and deflocculation). To show the results of the risk model, it was implemented in the Benchmark Simulation Models. This allowed to study the risk model's response in different scenarios and control strategies. The risk model has shown to be really useful providing a third criterion to evaluate control strategies apart from the economical and environmental criteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La comunitat científica que treballa en Intel·ligència Artificial (IA) ha dut a terme una gran quantitat de treball en com la IA pot ajudar a les persones a trobar el que volen dins d'Internet. La idea dels sistemes recomanadors ha estat extensament acceptada pels usuaris. La tasca principal d'un sistema recomanador és localitzar ítems, fonts d'informació i persones relacionades amb els interessos i preferències d'una persona o d'un grup de persones. Això comporta la construcció de models d'usuari i l'habilitat d'anticipar i predir les preferències de l'usuari. Aquesta tesi està focalitzada en l'estudi de tècniques d'IA que millorin el rendiment dels sistemes recomanadors. Inicialment, s'ha dut a terme un anàlisis detallat de l'actual estat de l'art en aquest camp. Aquest treball ha estat organitzat en forma de taxonomia on els sistemes recomanadors existents a Internet es classifiquen en 8 dimensions generals. Aquesta taxonomia ens aporta una base de coneixement indispensable pel disseny de la nostra proposta. El raonament basat en casos (CBR) és un paradigma per aprendre i raonar a partir de la experiència adequat per sistemes recomanadors degut als seus fonaments en el raonament humà. Aquesta tesi planteja una nova proposta de CBR aplicat al camp de la recomanació i un mecanisme d'oblit per perfils basats en casos que controla la rellevància i edat de les experiències passades. Els resultats experimentals demostren que aquesta proposta adapta millor els perfils als usuaris i soluciona el problema de la utilitat que pateixen el sistemes basats en CBR. Els sistemes recomanadors milloren espectacularment la qualitat dels resultats quan informació sobre els altres usuaris és utilitzada quan es recomana a un usuari concret. Aquesta tesi proposa l'agentificació dels sistemes recomanadors per tal de treure profit de propietats interessants dels agents com ara la proactivitat, la encapsulació o l'habilitat social. La col·laboració entre agents es realitza a partir del mètode de filtratge basat en la opinió i del mètode col·laboratiu de filtratge a partir de confiança. Els dos mètodes es basen en un model social de confiança que fa que els agents siguin menys vulnerables als altres quan col·laboren. Els resultats experimentals demostren que els agents recomanadors col·laboratius proposats milloren el rendiment del sistema mentre que preserven la privacitat de les dades personals de l'usuari. Finalment, aquesta tesi també proposa un procediment per avaluar sistemes recomanadors que permet la discussió científica dels resultats. Aquesta proposta simula el comportament dels usuaris al llarg del temps basat en perfils d'usuari reals. Esperem que aquesta metodologia d'avaluació contribueixi al progrés d'aquesta àrea de recerca.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Context: Learning can be regarded as knowledge construction in which prior knowledge and experience serve as basis for the learners to expand their knowledge base. Such a process of knowledge construction has to take place continuously in order to enhance the learners’ competence in a competitive working environment. As the information consumers, the individual users demand personalised information provision which meets their own specific purposes, goals, and expectations. Objectives: The current methods in requirements engineering are capable of modelling the common user’s behaviour in the domain of knowledge construction. The users’ requirements can be represented as a case in the defined structure which can be reasoned to enable the requirements analysis. Such analysis needs to be enhanced so that personalised information provision can be tackled and modelled. However, there is a lack of suitable modelling methods to achieve this end. This paper presents a new ontological method for capturing individual user’s requirements and transforming the requirements onto personalised information provision specifications. Hence the right information can be provided to the right user for the right purpose. Method: An experiment was conducted based on the qualitative method. A medium size of group of users participated to validate the method and its techniques, i.e. articulates, maps, configures, and learning content. The results were used as the feedback for the improvement. Result: The research work has produced an ontology model with a set of techniques which support the functions for profiling user’s requirements, reasoning requirements patterns, generating workflow from norms, and formulating information provision specifications. Conclusion: The current requirements engineering approaches provide the methodical capability for developing solutions. Our research outcome, i.e. the ontology model with the techniques, can further enhance the RE approaches for modelling the individual user’s needs and discovering the user’s requirements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We are experiencing an explosion of knowledge with relevance to conserving biodiversity and protecting the environment necessary to sustain life on earth. Many science disciplines are involved in generating this ne, knowledge and real progress can be made when scientists collaborate across disciplines to generate both macro- and micro-environmental knowledge and then communicate and interact with specialists in sociology, economics and public policy. An important requirement is that the often complex scientific concepts and their voluminous supporting data are managed in such ways as to make them accessible across the many specializations involved. Horticultural science has much to contribute to the knowledge base for environmental conservation. While it seems that production horticulture has been slow to embrace knowledge and concepts that would reduce the heavy reliance on agricultural chemicals, the use of peat as a growing medium, and lead to more sustainable use of water and other resources, environmental horticulture is providing valuable opportunities to rescue or protect endangered species, educate the public about plants and plant science, and demonstrate environmental stewardship and sustainable production practices. Likewise, social horticulture is drawing, attention to the many contributions of horticultural foods and parks and gardens to human health and welfare. Overall, horticulture has a vital role to play in integrating, knowledge from other scientific, social, economic and political disciplines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Knowledge recommendation has become a promising method in supporting the clinicians decisions and improving the quality of medical services in the constantly changing clinical environment. However, current medical knowledge management systems cannot understand users requirements accurately and realize personalized recommendation. Therefore this paper proposes an ontological approach based on semiotic principles to personalized medical knowledge recommendations. In particular, healthcare domain knowledge is conceptualized and an ontology-based user profile is built. Furthermore, the personalized recommendation mechanism is illustrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Knowledge management has become a promising method in supporting the clinicians′ decisions and improving the quality of medical services in the constantly changing clinical environment. However, current medical knowledge management systems cannot understand users′ requirements accurately and realize personalized matching. Therefore this paper proposes an ontological approach based on semiotic principles to personalized medical knowledge matching. In particular, healthcare domain knowledge is conceptualized and an ontology-based user profile is built. Furthmore, the personalized matching mechanism and algorithm are illustrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose This paper aims to fill the research and knowledge gap in knowledge management studies in Ghana. Knowledge acquisition is one of the unexploited areas in knowledge management literature, especially in the Ghanaian context. This study tries to ascertain the factors affecting knowledge acquisition in Ghanaian universities. Design/methodology/approach The study used the quantitative approach. The cross-sectional survey was adopted as the research design. A questionnaire consisting of Likert scale questions was used to collect data from the respondents. The items and the constructs were derived from the extant literature. The questionnaire was sent to 350 respondents, out of which 250 were returned fully completed. Data were quantitatively analysed using descriptive methods and factor analysis. Findings This study provides empirical evidence about the factors affecting knowledge acquisition in Ghanaian universities. Findings from the study show that programme content, lecturers’ competence, student academic background and attitude and facilities for teaching and learning influence knowledge acquisition in Ghanaian universities. Research limitations/implications Although the study seeks to generalize the findings, this should be cautiously done, as some scholars have advocated for large sample size. Nonetheless, there are some studies that have used sample size less than the one used in this study. Practical implications The study takes notice of the need for Ghanaian universities to use modern facilities and infrastructures such as electronic libraries and information technology equipment and also provide reading rooms to enhance teaching and learning. Originality/value Studies looking at knowledge acquisition in Ghanaian universities are virtually non-existent, and this study provides empirical findings on the factors affecting knowledge acquisition in Ghanaian universities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 2006 the Route load balancing algorithm was proposed and compared to other techniques aiming at optimizing the process allocation in grid environments. This algorithm schedules tasks of parallel applications considering computer neighborhoods (where the distance is defined by the network latency). Route presents good results for large environments, although there are cases where neighbors do not have an enough computational capacity nor communication system capable of serving the application. In those situations the Route migrates tasks until they stabilize in a grid area with enough resources. This migration may take long time what reduces the overall performance. In order to improve such stabilization time, this paper proposes RouteGA (Route with Genetic Algorithm support) which considers historical information on parallel application behavior and also the computer capacities and load to optimize the scheduling. This information is extracted by using monitors and summarized in a knowledge base used to quantify the occupation of tasks. Afterwards, such information is used to parameterize a genetic algorithm responsible for optimizing the task allocation. Results confirm that RouteGA outperforms the load balancing carried out by the original Route, which had previously outperformed others scheduling algorithms from literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Belief Revision deals with the problem of adding new information to a knowledge base in a consistent way. Ontology Debugging, on the other hand, aims to find the axioms in a terminological knowledge base which caused the base to become inconsistent. In this article, we propose a belief revision approach in order to find and repair inconsistencies in ontologies represented in some description logic (DL). As the usual belief revision operators cannot be directly applied to DLs, we propose new operators that can be used with more general logics and show that, in particular, they can be applied to the logics underlying OWL-DL and Lite.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The notion of knowledge artifact has rapidly gained popularity in the fields of general knowledge management and more recently knowledge-based systems. The main goal on this paper is to propose and discuss a methodology for the design and implementation of knowledge-based systems founded on knowledge artifacts. We advocate that the systems built according to this methodology can be effective to convey the flow of knowledge between different communities of practice. Our methodology has been developed from the ground up, i.e. we have built some concrete systems based on the abstract notion of knowledge artifact and synthesized our methodology based on reflections upon our experiences building these systems. In this paper, we also describe the most relevant systems we have built and how they have guided us to the synthesis of our proposed methodology. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Judging by their success in Europe, Asia and North America, passenger and cargo railways are appreciated as the key to infrastructural development in Brazil. The issues are complex and steeped in uncertainty, as well as political and economic agendas, and a wide array of intersecting issues such as business and unionized interests, agricultural and industrial geographical spreads, as well as the emergence of alternative power sources. Not only are the issues systemic, but railway development itself always comes as a physical network structure. The situation under consideration, in other words, is systemic from both the soft and hard systems point of view, thus promising a rich context for systems studies. As an initial attempt in understanding the situation at hand, the research reported here applied the problem structuring approach known as Strategic Options Development and Analysis (SODA) in order to map and analyze issues facing the Brazilian railways. Strategic options for the future development of the railways were identified and analyzed, and ways forward for future research are proposed. In addition, the report serves as an initial knowledge base that can guide future systemic planning studies in the industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PEDRO, Edilson da Silva. Estratégias para a organização da pesquisa em cana-de-açúcar: uma análise de governança em sistemas de inovação. 2008. 226f. Tese (Doutorado em Política Científica e Tecnológica) - Universidade Estadual de Campinas, Campinas, 2008.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sharing of knowledge and integration of data is one of the biggest challenges in health and essential contribution to improve the quality of health care. Since the same person receives care in various health facilities throughout his/her live, that information is distributed in different information systems which run on platforms of heterogeneous hardware and software. This paper proposes a System of Health Information Based on Ontologies (SISOnt) for knowledge sharing and integration of data on health, which allows to infer new information from the heterogeneous databases and knowledge base. For this purpose it was created three ontologies represented by the patterns and concepts proposed by the Semantic Web. The first ontology provides a representation of the concepts of diseases Secretariat of Health Surveillance (SVS) and the others are related to the representation of the concepts of databases of Health Information Systems (SIS), specifically the Information System of Notification of Diseases (SINAN) and the Information System on Mortality (SIM)