825 resultados para Knowledge Information Objects
Resumo:
We provide a survey of the literature on ranking sets of objects. The interpretations of those set rankings include those employed in the theory of choice under complete uncertainty, rankings of opportunity sets, set rankings that appear in matching theory, and the structure of assembly preferences. The survey is prepared for the Handbook of Utility Theory, vol. 2, edited by Salvador Barberà, Peter Hammond, and Christian Seidl, to be published by Kluwer Academic Publishers. The chapter number is provisional.
Resumo:
Ce mémoire présente les recherches et réflexions entourant la conception d’une application à base d’ontologie dédiée au e-recrutement dans le domaine des services de dotation de personnel en technologies de l’information à l’ère du Web Social. Cette application, nommée Combine, vise essentiellement à optimiser et enrichir la Communication Médiée par Ordinateur (CMO) des acteurs du domaine et utilise des concepts issus du paradigme technologique émergent qu’est le Web sémantique. Encore très peu discuté dans une perspective CMO, le présent mémoire se propose donc d’examiner les enjeux communicationnels relatifs à ce nouveau paradigme. Il présente ses principaux concepts, dont la notion d’ontologie qui implique la modélisation formelle de connaissances, et expose le cas de développement de Combine. Il décrit comment cette application fut développée, de l’analyse des besoins à l’évaluation du prototype par les utilisateurs ciblés, tout en révélant les préoccupations, les contraintes et les opportunités rencontrées en cours de route. Au terme de cet examen, le mémoire tend à évaluer de manière critique le potentiel de Combine à optimiser la CMO du domaine d’activité ciblé. Le mémoire dresse au final un portrait plutôt favorable quant à la perception positive des acteurs du domaine d’utiliser un tel type d’application, et aussi quant aux nets bénéfices en frais d’Interactions Humain-Ordinateur (IHO) qu’elle fait miroiter. Il avertit toutefois d’une certaine exacerbation du problème dit « d’engagement ontologique » à considérer lors de la construction d’ontologies modélisant des objets sociaux tels que ceux dont le monde du recrutement est peuplé.
Resumo:
This paper describes the current information dynamics and its effect in higher education and research in science and technology. Open access movement ,Institutional repositories ,Digital libraries,Knowledge gateways,Blogs,Wikis,and social bookmark tools have rapidly emerged on the web creating a new scenerio that radically changes the knowledge production process such as the creation of information,formats and sources of information,coding and processing ,accessing managing sharing and dissemination of information.The management of knowledge created by academia of Cochin University Of Science And Technology is examined in this challenging context of information dynamics.
Resumo:
The paper discusses the use of online information resources for organising knowledge in library and information centres in Cochin University of Science and Technology (CUSAT). The paper discusses the status and extent of automation in CUSAT library. The use of different online resources and the purposes for which these resources are being used, is explained in detail. Structured interview method was applied for collecting data. It was observed that 67 per cent users consult online resources for assisting knowledge organisation. Library of Congress catalogue is the widely used (100 per cent) online resource followed by OPAC of CUSAT and catalogue of British Library. The main purposes for using these resources are class number building and subject indexing
Resumo:
Conceptual Information Systems unfold the conceptual structure of data stored in relational databases. In the design phase of the system, conceptual hierarchies have to be created which describe different aspects of the data. In this paper, we describe two principal ways of designing such conceptual hierarchies, data driven design and theory driven design and discuss advantages and drawbacks. The central part of the paper shows how Attribute Exploration, a knowledge acquisition tool developped by B. Ganter can be applied for narrowing the gap between both approaches.
Resumo:
Conceptual Information Systems provide a multi-dimensional conceptually structured view on data stored in relational databases. On restricting the expressiveness of the retrieval language, they allow the visualization of sets of realted queries in conceptual hierarchies, hence supporting the search of something one does not have a precise description, but only a vague idea of. Information Retrieval is considered as the process of finding specific objects (documents etc.) out of a large set of objects which fit to some description. In some data analysis and knowledge discovery applications, the dual task is of interest: The analyst needs to determine, for a subset of objects, a description for this subset. In this paper we discuss how Conceptual Information Systems can be extended to support also the second task.
Resumo:
The goal of the work reported here is to capture the commonsense knowledge of non-expert human contributors. Achieving this goal will enable more intelligent human-computer interfaces and pave the way for computers to reason about our world. In the domain of natural language processing, it will provide the world knowledge much needed for semantic processing of natural language. To acquire knowledge from contributors not trained in knowledge engineering, I take the following four steps: (i) develop a knowledge representation (KR) model for simple assertions in natural language, (ii) introduce cumulative analogy, a class of nearest-neighbor based analogical reasoning algorithms over this representation, (iii) argue that cumulative analogy is well suited for knowledge acquisition (KA) based on a theoretical analysis of effectiveness of KA with this approach, and (iv) test the KR model and the effectiveness of the cumulative analogy algorithms empirically. To investigate effectiveness of cumulative analogy for KA empirically, Learner, an open source system for KA by cumulative analogy has been implemented, deployed, and evaluated. (The site "1001 Questions," is available at http://teach-computers.org/learner.html). Learner acquires assertion-level knowledge by constructing shallow semantic analogies between a KA topic and its nearest neighbors and posing these analogies as natural language questions to human contributors. Suppose, for example, that based on the knowledge about "newspapers" already present in the knowledge base, Learner judges "newspaper" to be similar to "book" and "magazine." Further suppose that assertions "books contain information" and "magazines contain information" are also already in the knowledge base. Then Learner will use cumulative analogy from the similar topics to ask humans whether "newspapers contain information." Because similarity between topics is computed based on what is already known about them, Learner exhibits bootstrapping behavior --- the quality of its questions improves as it gathers more knowledge. By summing evidence for and against posing any given question, Learner also exhibits noise tolerance, limiting the effect of incorrect similarities. The KA power of shallow semantic analogy from nearest neighbors is one of the main findings of this thesis. I perform an analysis of commonsense knowledge collected by another research effort that did not rely on analogical reasoning and demonstrate that indeed there is sufficient amount of correlation in the knowledge base to motivate using cumulative analogy from nearest neighbors as a KA method. Empirically, evaluating the percentages of questions answered affirmatively, negatively and judged to be nonsensical in the cumulative analogy case compares favorably with the baseline, no-similarity case that relies on random objects rather than nearest neighbors. Of the questions generated by cumulative analogy, contributors answered 45% affirmatively, 28% negatively and marked 13% as nonsensical; in the control, no-similarity case 8% of questions were answered affirmatively, 60% negatively and 26% were marked as nonsensical.
Resumo:
If we are to understand how we can build machines capable of broad purpose learning and reasoning, we must first aim to build systems that can represent, acquire, and reason about the kinds of commonsense knowledge that we humans have about the world. This endeavor suggests steps such as identifying the kinds of knowledge people commonly have about the world, constructing suitable knowledge representations, and exploring the mechanisms that people use to make judgments about the everyday world. In this work, I contribute to these goals by proposing an architecture for a system that can learn commonsense knowledge about the properties and behavior of objects in the world. The architecture described here augments previous machine learning systems in four ways: (1) it relies on a seven dimensional notion of context, built from information recently given to the system, to learn and reason about objects' properties; (2) it has multiple methods that it can use to reason about objects, so that when one method fails, it can fall back on others; (3) it illustrates the usefulness of reasoning about objects by thinking about their similarity to other, better known objects, and by inferring properties of objects from the categories that they belong to; and (4) it represents an attempt to build an autonomous learner and reasoner, that sets its own goals for learning about the world and deduces new facts by reflecting on its acquired knowledge. This thesis describes this architecture, as well as a first implementation, that can learn from sentences such as ``A blue bird flew to the tree'' and ``The small bird flew to the cage'' that birds can fly. One of the main contributions of this work lies in suggesting a further set of salient ideas about how we can build broader purpose commonsense artificial learners and reasoners.
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
Guía práctica sobre tecnologías de la información y la comunicación para profesores en formación (nivel bachillerato). Les permite identificar y desarrollar sus propias habilidades tecnológicas aplicadas a la enseñanza y al mismo tiempo apoyar la evolución de los alumnos. Contiene todas las áreas claves de conocimiento, compresión y habilidades personales, además de analizar en un contexto amplio cómo las habilidades tecnológicas en información y comunicación se adquieren y se desarrollan a nivel personal, social y cultural. El contenido está adaptado para la obtención de los certificados QTLS (Qualified Teacher, Learning and Skills) y ATLS (Associate Teacher, Learning and Skills).
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·