970 resultados para Kalman filtering G
Resumo:
In Victoria, as in other jurisdictions, there is very little research on the potential risks and benefits of lane filtering by motorcyclists, particularly from a road safety perspective. This on-road proof of concept study aimed to investigate whether and how lane filtering influences motorcycle rider situation awareness at intersections and to address factors that need to be considered for the design of a larger study in this area. Situation awareness refers to road users’ understanding of ‘what is going on’ around them and is a critical commodity for safe performance. Twenty-five experienced motorcyclists rode their own instrumented motorcycle around an urban test route in Melbourne whilst providing verbal protocols. Lane filtering occurred in 27% of 43 possible instances in which there were one or more vehicles in the traffic queue and the traffic lights were red on approach to the intersection. A network analysis procedure, based on the verbal protocols provided by motorcyclists, was used to identify differences in motorcyclist situation awareness between filtering and non-filtering events. Although similarities in situation awareness across filtering and nonfiltering motorcyclists were found, the analysis revealed some differences. For example, filtering motorcyclists placed more emphasis on the timing of the traffic light sequence and on their own actions when moving to the front of the traffic queue, whilst non-filtering motorcyclists paid greater attention to traffic moving through the intersection and approaching from behind. Based on the results of this study, the paper discusses some methodological and theoretical issues to be addressed in a larger study comparing situation awareness between filtering and non-filtering motorcyclists.
Resumo:
In this paper conditional hidden Markov model (HMM) filters and conditional Kalman filters (KF) are coupled together to improve demodulation of differential encoded signals in noisy fading channels. We present an indicator matrix representation for differential encoded signals and the optimal HMM filter for demodulation. The filter requires O(N3) calculations per time iteration, where N is the number of message symbols. Decision feedback equalisation is investigated via coupling the optimal HMM filter for estimating the message, conditioned on estimates of the channel parameters, and a KF for estimating the channel states, conditioned on soft information message estimates. The particular differential encoding scheme examined in this paper is differential phase shift keying. However, the techniques developed can be extended to other forms of differential modulation. The channel model we use allows for multiplicative channel distortions and additive white Gaussian noise. Simulation studies are also presented.
Resumo:
In this study, a non-linear excitation controller using inverse filtering is proposed to damp inter-area oscillations. The proposed controller is based on determining generator flux value for the next sampling time which is obtained by maximising reduction rate of kinetic energy of the system after the fault. The desired flux for the next time interval is obtained using wide-area measurements and the equivalent area rotor angles and velocities are predicted using a non-linear Kalman filter. A supplementary control input for the excitation system, using inverse filtering approach, to track the desired flux is implemented. The inverse filtering approach ensures that the non-linearity introduced because of saturation is well compensated. The efficacy of the proposed controller with and without communication time delay is evaluated on different IEEE benchmark systems including Kundur's two area, Western System Coordinating Council three-area and 16-machine, 68-bus test systems.
Resumo:
Since a celebrate linear minimum mean square (MMS) Kalman filter in integration GPS/INS system cannot guarantee the robustness performance, a H(infinity) filtering with respect to polytopic uncertainty is designed. The purpose of this paper is to give an illustration of this application and a contrast with traditional Kalman filter. A game theory H(infinity) filter is first reviewed; next we utilize linear matrix inequalities (LMI) approach to design the robust H(infinity) filter. For the special INS/GPS model, unstable model case is considered. We give an explanation for Kalman filter divergence under uncertain dynamic system and simultaneously investigate the relationship between H(infinity) filter and Kalman filter. A loosely coupled INS/GPS simulation system is given here to verify this application. Result shows that the robust H(infinity) filter has a better performance when system suffers uncertainty; also it is more robust compared to the conventional Kalman filter.
Resumo:
This paper demonstrates the application of inverse filtering technique for power systems. In order to implement this method, the control objective should be based on a system variable that needs to be set on a specific value for each sampling time. A control input is calculated to generate the desired output of the plant and the relationship between the two is used design an auto-regressive model. The auto-regressive model is converted to a moving average model to calculate the control input based on the future values of the desired output. Therefore, required future values to construct the output are predicted to generate the appropriate control input for the next sampling time.
Efficient implementations of a pseudodynamical stochastic filtering strategy for static elastography
Resumo:
A computationally efficient pseudodynamical filtering setup is established for elasticity imaging (i.e., reconstruction of shear modulus distribution) in soft-tissue organs given statically recorded and partially measured displacement data. Unlike a regularized quasi-Newton method (QNM) that needs inversion of ill-conditioned matrices, the authors explore pseudodynamic extended and ensemble Kalman filters (PD-EKF and PD-EnKF) that use a parsimonious representation of states and bypass explicit regularization by recursion over pseudotime. Numerical experiments with QNM and the two filters suggest that the PD-EnKF is the most robust performer as it exhibits no sensitivity to process noise covariance and yields good reconstruction even with small ensemble sizes.
Resumo:
The stochastic filtering has been in general an estimation of indirectly observed states given observed data. This means that one is discussing conditional expected values as being one of the most accurate estimation, given the observations in the context of probability space. In my thesis, I have presented the theory of filtering using two different kind of observation process: the first one is a diffusion process which is discussed in the first chapter, while the third chapter introduces the latter which is a counting process. The majority of the fundamental results of the stochastic filtering is stated in form of interesting equations, such the unnormalized Zakai equation that leads to the Kushner-Stratonovich equation. The latter one which is known also by the normalized Zakai equation or equally by Fujisaki-Kallianpur-Kunita (FKK) equation, shows the divergence between the estimate using a diffusion process and a counting process. I have also introduced an example for the linear gaussian case, which is mainly the concept to build the so-called Kalman-Bucy filter. As the unnormalized and the normalized Zakai equations are in terms of the conditional distribution, a density of these distributions will be developed through these equations and stated by Kushner Theorem. However, Kushner Theorem has a form of a stochastic partial differential equation that needs to be verify in the sense of the existence and uniqueness of its solution, which is covered in the second chapter.
Resumo:
The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.
Resumo:
This paper deals with the experimental evaluation of a flow analysis system based on the integration between an under-resolved Navier-Stokes simulation and experimental measurements with the mechanism of feedback (referred to as Measurement-Integrated simulation), applied to the case of a planar turbulent co-flowing jet. The experiments are performed with inner-to-outer-jet velocity ratio around 2 and the Reynolds number based on the inner-jet heights about 10000. The measurement system is a high-speed PIV, which provides time-resolved data of the flow-field, on a field of view which extends to 20 jet heights downstream the jet outlet. The experimental data can thus be used both for providing the feedback data for the simulations and for validation of the MI-simulations over a wide region. The effect of reduced data-rate and spatial extent of the feedback (i.e. measurements are not available at each simulation time-step or discretization point) was investigated. At first simulations were run with full information in order to obtain an upper limit of the MI-simulations performance. The results show the potential of this methodology of reproducing first and second order statistics of the turbulent flow with good accuracy. Then, to deal with the reduced data different feedback strategies were tested. It was found that for small data-rate reduction the results are basically equivalent to the case of full-information feedback but as the feedback data-rate is reduced further the error increases and tend to be localized in regions of high turbulent activity. Moreover, it is found that the spatial distribution of the error looks qualitatively different for different feedback strategies. Feedback gain distributions calculated by optimal control theory are presented and proposed as a mean to make it possible to perform MI-simulations based on localized measurements only. So far, we have not been able to low error between measurements and simulations by using these gain distributions.
Resumo:
Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.
Resumo:
An analytical model for the spin filtering transport in a ferromagnetic-metal - Al2O3 - n-type semiconductor tunneling structure has been developed, and demonstrated that the ratio of the helicity-modulated photo-response to the chopped one is proportional to the sum of the relative asymmetry in conductance of two opposite spin-polarized tunneling channels and the MCD effect of the ferromagnetic metal film. The performed measurement in an iron-metal/Al2O3/n-type GaAs tunneling structure under the optical spin orientation has verified that all the aspects of the experimental results are very well in accordance with our model in the regime of the spin filtering. After the MCD effect of the iron film is calibrated by an independent measurement, the physical quantity of Delta G(t)/G(t) (Delta G(t) = G(t)(up arrow) - G(t)(down arrow) is the difference of the conductance between two opposite spin tunneling channels, G(t) =( G(t)(up arrow) + G(t)(down arrow))/2 the averaged tunneling conductance), which concerns us most, can be determined quantitatively with a high sensitivity in the framework of our analytical model. Copyright (c) EPLA, 2008.