992 resultados para JUDD-OFELT PARAMETERS
Resumo:
应用Judd-Oflet理论计算了新型掺铒高硅氧玻璃中铒离子的强度参量Ωt(t=2,4,6),Ω2=8.15×10^-20,Ω4=1.43×10^-20,Ω6=1.22×10^-20,相比于其他氧化物玻璃,表现出较大的Ω2,6值,反映了铒离子周围的近邻结构不对称性和Er-O键的离子键成分较高.利用McCumber理论计算得到了能级4I13/2→4I15/2跃迁的受激发射截面为σc=O.51pm^2.这种高硅氧玻璃掺铒离子浓度尽管高于石英光纤的掺杂浓度10倍左右,其荧光寿命和量子效率仍达到6.0ms和66.
Resumo:
熔制了掺铒碲铌玻璃样品(100-X)TeO2-XNb2O5(X=5,10,15,20mol%),测试了其密度、折射率、转变温度、析晶温度、维氏机械强度、吸收光谱、荧光光谱、荧光寿命等参量。利用Judd-Ofelt和McCumber理论分别计算了铒离子强度参量Ωt(t=2,4,6)和受激发射截面σcmi的大小,研究了掺铒碲铌玻璃样品光谱参量对Nb2O5成分的依赖性,并与典型的碲锌钠玻璃(75TeO2-20ZnO-5Na2O)在热学、机械强度、光谱性质和放大品行四个方面进行了比较.
Resumo:
在掺铒碲酸盐玻璃中加入Nb2O5以提高其热力学稳定性,测试了4种掺铒碲酸盐玻璃的热力学稳定性参数及其吸收光谱、荧光光谱.应用Judd-Ofelt理论计算了玻璃的强度参数Ω(Ω2=(5.99~10.38)×10^-20cm^2,Ω4=(1.91~2.67)×10^-20cm^2,Ω=(0.92~1.28)×10~cm^2),应用McCumher理论计算了受激发射截面.比较了不同组成对碲酸盐热力学稳定性和光谱性质的影响.实验结果表明,0.70TeO2-0.15Zn0—0.05BaO—0.10Nh2O5玻璃具有
Resumo:
For the Er3+/Yb3+ codoped fluorophosphate glasses, Judd-Ofelt theory is used to analyse the influence of YbF3 as not a sensitizer but an average component on the spectroscopic properties around 1530 nm emission. The double roles of Yb3+, as a sensitizer and as an average component, are discussed. It is found that Yb3+ as an average component contributes to the increase of fluorescence lifetime, and Yb3+ as a sensitizer has the best sensitization when its concentration is 2.4 mol%.
Resumo:
Er3+-doped halide modified tellurite glasses were synthesized by conventional melting and quenching method. The Judd-Ofelt analysis was performed on the absorption spectra and the transition probabilities, excited state lifetimes, and the branching ratios were calculated and discussed. The intense infrared and visible fluorescence spectra under 980 nm excitation were obtained. Strong upconversion signal was observed at pumping power as low as 30 mW in the glasses with halide ions. The upconversion mechanisms and power dependent intensities were discussed, which showed two-photon process are involved for the green and red emissions. The decay times of the emitting states and the corresponding quantum efficiency were determined and explained. (C) 2004 American Institute of Physics.
Resumo:
Er3+-doped TeO2-based oxysulfide glasses have been prepared in argon atmosphere in carbon crucibles. The thermal analysis and spectroscopic properties of Er (3+) have been considered in terms of sulfide influence. As a function of composition, we have principally measured optical absorption, spontaneous emission and lifetime measurements. Judd-Ofelt theory was introduced to calculate bandwidth and emission cross-section. The results show the product FVMM x sigma(c) increase from 476.8 8 to 635.04 10(-21) cm(2) nm evidently with the addition of 10 mol% PbS into tellurite glass, which indicates a perfect effect on spectra property of Er3+ ions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A series of zinc tellurite glasses of 75TeO(2)-20ZnO-(5-x)La2O3-xEr(2)O(3) (x=0.02, 0.05, and 0.1 mol%) with the different hydroxl groups were prepared by the conventional melt-quenching method. Infrared spectra were measured in order to estimate the exact content of OH- groups in samples. The observed increase of the fluorescence lifetime with the oxygen bubbling time has been related to the reduction in the OH- content concentration as evidenced by IR transmission spectra. Various nonradiative decay rates from I-4(13/2) of Er3+ with. the change of OH content were determined from the fluorescence lifetime and radiative decay rates were calculated on the basis of Judd-Ofelt theory. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Er3+-doped TeO2-WO3 glass was fabricated and characterized by absorption spectrum, fluorescence spectrum, Raman spectrum and stability. The Judd-Ofelt parameter ohm(t)(t = 2, 4, 6) were calculated from the absorption spectrum by the Judd-Ofelt theory. The fluorescence spectrum indicates that the fluorescence width at half-maximum (FWHM) is 66nm. The stimulated emission cross-section of Er3+ in TeO2-WO3 glass at 1532 nm was calculated to be 0.80 x 10(-20) cm(2) by McCumber theory. The phonon energy of TeO2-WO3 glass is found to be 931 cm(-1). The difference between crystallization onset temperature and glass transition temperature Delta T is 112 degrees C. These results show that Er3+-doped TeO2-WO3 glass has higher stability and good spectral properties, which were useful for broadband amplifier. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The absorption spectra, emission spectra and infrared spectra of Er3+/Yb3+ co-doped xBi(2)O(3)-(65 - x)P2O5-4Yb(2)O(3)-11Al(2)O(3)-5BaO-15Na(2)O were measured and investigated. Spontaneous emission probability, radiative lifetime and branching ratios of Er3+ were calculated according to the Judd-Ofelt theory. The role of substitution of Bi2O3 for P2O5 on luminescence of Er3+/Yb3+ co-doped aluminophosphate glasses has been investigated. The calculated radiative lifetimes (tau(rad)) for I-4(13/2) and I-4(11/2) were decreasing with Bi2O3 content increases, whereas the measured total lifetime (tau(meas)) for I-4(13/2) showed linearly increasing trends. The effect of Bi2O3 introduction on OH- groups was also discussed according to the IR transmittance spectra of glasses. It was found that FWHM of glasses were not affected with the substitution of Bi2O3 for P2O5. The emission spectra intensity increased with Bi2O3 content due to the decreases of phonon energy and OH- content in glasses. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A compact nonporous high silica (SiO2 % > 96%) glass containing 3400 ppm Er3+ ions, which was about ten times higher than that in Er-doped silica fiber amplifier (EDSFA), was synthesized by sintering porous glass immersed into erbium nitrate solution. The 1532 nm fluorescence has a FWHM (Full Width at Half Maximum) of 45 nm wider than that of EDSFA and possesses the glass with potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that Er3+ ions are located in a higher covalent environment which are comparable to those of aluminosilicate glass. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new method was used to prepare erbium-doped high silica (SiO2% > 96%) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6 x 103) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.
Resumo:
Absorption spectrum from 400 to 2000 run and upconversion fluorescence spectra under 940 nm pumping of YAG single crystal codoped with 5 at.% Yb3+ and 4 at.% Tm3+ were studied at room temperature. The blue upconversion emission centered at 483 nm corresponds to the transition (1)G(4) -> H-3(6), the emission band around 646 nm corresponds to the transition (1)G(4) -> F-3(4) of Tm3+. Energy transfer from Yb3+ to Tm3+ is mainly nonradiative and the transfer efficiency was experimentally assessed. The line strengths, transition probabilities and radiative lifetimes of (1)G(4) level were calculated by using Judd-Ofelt theory. Gain coefficient calculated from spectra shows that the upconversion corresponding with transitions (1)G(4) -> H-3(6) in YAG doped with Yb3+ and Tm3+ is potentially useful for blue light Output. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A novel Nd3+-doped lead fluorosilicate glass (NPS glass) is prepared by a two-step melting process. Based on the absorption spectrum a Judd-Ofelt theory analysis is made. The emission line width of NPS glass is 44.2nm. The fluorescence decay lifetime of the 4F3/2 level is 586±20μsec, and the stimulated emission cross-section is 0.87×10-20cm2 at 1056nm. A laser oscillation is occurred at 1062nm when pumped by 808nm Diode Laser. The slope efficiency is 23.7% with a 415mJ threshold. It is supposed that NPS glass is a good candidate for using in ultra-short pulse generation and amplification by the broad emission bandwidth and long fluorescence lifetime.
Resumo:
采用高温熔制工艺制备了掺Er3+硅酸盐玻璃,应用Judd-Ofelt 理论计算了Er3+光谱参数, 发现玻璃中含有0.15 mol%Er2O3 时各参数取得最大值;分析了玻璃的吸收光谱随Er3+离子浓度的变 化关系;上转换光谱分析表明在522 nm、544 nm、658 nm 处有较强的绿光和红光,分别对应于 2H11/2→4I15/2、4 S3/2→4I15/2、4 F9/2→4I15/2 的跃迁,且522 nm 绿光强度和658nm 红光强度要远大于544 nm 绿光强度. 分析了上转换发光强度随泵浦功率和Er3+离子浓度的变化关系,揭示了上转换发光机制 主要是激发态吸收和能量转换,且均为双光子吸收过程.