913 resultados para Ion exchange resins.
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
The investigation of the electrolytic precipitation of uranium from a sample of acid leach liquor in an ion exchange membrane cell has been conducted on leach liquor from the Vitro Co. This leach liquor can be treated by the above means to precipitate essentially all the uranium and simultaneously to produce additional acid which may be used for further leaching.
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
"Contract No. AT(49-1)-621."
Resumo:
Vita.
Resumo:
Column-based refolding of complex and highly disulfide-bonded proteins simplifies protein renaturation at both preparative and process scale by integrating and automating a number of operations commonly used in dilution refolding. Bovine serum albumin (BSA) was used as a model protein for refolding and oxido-shuffling on an ion-exchange column to give a refolding yield of 55 % after 40 Ih incubation. Successful on-column refolding was conducted at protein concentrations of up to 10 mg/ml and refolded protein, purified from misfolded forms, was eluted directly from the column at a concentration of 3 mg/ml. This technique integrates the dithiothreitol removal, refolding, concentration and purification steps, achieving a high level of process simplification and automation, and a significant saving in reagent costs when scaled. Importantly, the current result suggests that it is possible to controllably refold disulfide-bonded proteins using common and inexpensive matrices, and that it is not always necessary to control protein-surface interactions using affinity tags and expensive chromatographic matrices. Moreover, it is possible to strictly control the oxidative refolding environment once denatured protein is bound to the ion-exchange column, thus allowing precisely controlled oxido-shuffling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A chromatographic method was developed for the determination of tryptophan content in food and feed proteins. The method involves separation and quantitation of tryptophan (released from protein by alkaline hydrolysis with NaOH) by isocratic ion-exchange chromatography with O-phthalaldehyde derivatization followed by fluorescence detection. In this procedure, chromatographic separation of the tryptophan and alpha-methyl tryptophan, the internal standard, was complete in 15 min, without any interference from other compounds. The precision of the method was 1-4%, relative standard deviation. Accuracy was validated by agreement with the value for chicken egg white lysozyme, a sequenced protein, and by quantitative recoveries after spiking with lysozyme. The method allows determination in a range of feed proteins, containing varied concentrations of tryptophan, and is applicable to systems used for routine amino acid analysis by ion-exchange chromatography. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this research is to investigate potential methods to produce an ion-exchange membrane that can be integrated directly into a polydimethylsiloxane Lab-on-a-Chip or Micro-Total-Analysis-System. The majority of microfluidic membranes are based on creating microporous structures, because it allows flexibility in the choice of material such that it can match the material of the microfluidic chip. This cohesion between the material of the microfluidic chip and membrane is an important feature to prevent bonding difficulties which can lead to leaking and other practical problems. However, of the materials commonly used to manufacture microfluidic chips, there are none that provide the ion-exchange capability. The DuPont product Nafion{TM} is chosen as the ion-exchange membrane, a copolymer with high conductivity and selectivity to cations and suitable for many applications such as electrolysis of water and the chlor-alkali process. The use of such an ion-exchange membrane in microfluidics could have multiple advantages, but there is no reversible/irreversible bonding that occurs between PDMS and Nafion{TM}. In this project multiple methods of physical entrapment of the ion-exchange material inside a film of PDMS are attempted. Through the use of the inherent properties of PDMS, very inexpensive sugar granulate can be used to make an inexpensive membrane mould which does not interfere with the PDMS crosslinking process. After dissolving away this sacrificial mould material, Nafion{TM} is solidified in the irregular granulate holes. Nafion{TM} in this membrane is confined in the irregular shape of the PDMS openings. The outer structure of the membrane is all PDMS and can be attached easily and securely to any PDMS-based microfluidic device through reversible or irreversible PDMS/PDMS bonding. Through impedance measurement, the effectiveness of these integrated membranes are compared against plain Nafion{TM} films in simple sodium chloride solutions.