906 resultados para Inventory system with state dependent damands
Resumo:
The topic of this study was to evaluate state-dependent effects of diazepam on the frequency characteristics of 47-channel spontaneous EEG maps. A novel method, the FFT-Dipole-Approximation (Lehmann and Michel, 1990), was used to study effects on the strength and the topography of the maps in the different frequency bands. Map topography was characterized by the 3-dimensional location of the equivalent dipole source and map strength was defined as the spatial standard deviation (the Global Field Power) of the maps of each frequency point. The Global Field Power can be considered as a measure of the amount of energy produced by the system, while the source location gives an estimate of the center of gravity of all sources in the brain that were active at a certain frequency. State-dependency was studied by evaluating the drug effects before and after a continuous performance task of 25 min duration. Clear interactions between drug (diazepam vs. placebo) and time after drug intake (before and after the task) were found, especially in the inferior-superior location of the dipole sources. It supports the hypothesis that diazepam, like other drugs, has different effects on brain functions depending on the momentary functional state of the brain. In addition to the drug effects, clearly different source locations and Global Field Power were found for the different frequency bands, replicating earlier reports (Michel et al., 1992).
Resumo:
We study a parabolic–elliptic chemotactic system describing the evolution of a population’s density “u” and a chemoattractant’s concentration “v”. The system considers a non-constant chemotactic sensitivity given by “χ(N−u)”, for N≥0, and a source term of logistic type “λu(1−u)”. The existence of global bounded classical solutions is proved for any χ>0, N≥0 and λ≥0. By using a comparison argument we analyze the stability of the constant steady state u=1, v=1, for a range of parameters. – For N>1 and Nλ>2χ, any positive and bounded solution converges to the steady state. – For N≤1 the steady state is locally asymptotically stable and for χN<λ, the steady state is globally asymptotically stable.
Resumo:
In this work, we proposes a control strategy that allows the remote manipulator follow the local manipulator through the state convergence even if it has a delay in the communication channel. The bilateral control of the teleoperator system considers the case were the human operator applies a constant force on the local manipulator and when the interaction of the remote manipulator with the environment is considered passive. The stability analysis was performed using Lyapunov- Krasovskii functional, it showed for the case with constant delay, that using a proposed control algorithm by state convergence resulted in asymptotically stable, local and remote the nonlinear teleoperation system.
Resumo:
In this work, we proposes a control strategy by state convergence applied to bilateral control of a nonlinear teleoperator system with constant delay. The bilateral control of the teleoperator system considers the case when the human operator applies a constant force on the local manipulator and when the interaction of the remote manipulator with the environment is considered passive. The stability analysis is performed using Lyapunov-Krasovskii functional, it showed that using an control algorithm by state convergence for the case with constant delay, the nonlinear local and remote teleoperation system is asymptotically stable, also speeds converge to zero and position tracking is achieved. This work also presents the implementation of an experimental platform. The mechanical structure of the arm that is located in the remote side has been built and the electric servomechanism has been mounted to control their movement.
Resumo:
An improved mammalian two-hybrid system designed for interaction trap screening is described in this paper. CV-1/EBNA-1 monkey kidney epithelial cells expressing Epstein–Barr virus nuclear antigen 1 (EBNA-1) were stably transfected with a reporter plasmid for GAL4-dependent expression of the green fluorescent protein (GFP). A resulting clone, GB133, expressed GFP strongly when transfected transiently with transcriptional activators fused to GAL4 DNA-binding domain with minimal background GFP expression. GB133 cells maintained plasmids containing the OriP Epstein–Barr virus replication origin that directs replication of plasmids in mammalian cells in the presence of the EBNA-1 protein. GB133 cells transfected stably with a model bait expressed GFP when further transfected transiently with an expression plasmid for a known positive prey. When the bait-expressing GB133 cells were transfected transiently with an OriP-containing expression plasmid for the positive prey together with excess amounts of empty vector, cells that received the positive prey were readily identified by green fluorescence in cell culture and eventually formed green fluorescent microcolonies, because the prey plasmid was maintained by the EBNA-1/Ori-P system. The green fluorescent microcolonies were harvested directly from the culture dishes under a fluorescence microscope, and total DNA was then prepared. Prey-encoding cDNA was recovered by PCR using primers annealing to the vector sequences flanking the insert-cloning site. This system should be useful in mammalian cells for efficient screening of cDNA libraries by two-hybrid interaction.
Resumo:
The thermodynamic stability and oligomerization status of the tumor suppressor p53 tetramerization domain have been studied experimentally and theoretically. A series of hydrophilic mutations at Met-340 and Leu-344 of human p53 were designed to disrupt the hydrophobic dimer–dimer interface of the tetrameric oligomerization domain of p53 (residues 325–355). Meanfield calculations of the free energy of the solvated mutants as a function of interdimer distance were compared with experimental data on the thermal stability and oligomeric state (tetramer, dimer, or equilibrium mixture of both) of each mutant. The calculations predicted a decreasing stability and oligomeric state for the following amino acids at residue 340: Met (tetramer) > Ser Asp, His, Gln, > Glu, Lys (dimer), whereas the experimental results showed the following order: Met (tetramer) > Ser > Gln > His, Lys > Asp, Glu (dimers). For residue 344, the calculated trend was Leu (tetramer) > Ala > Arg, Gln, Lys (dimer), and the experimental trend was Leu (tetramer) > Ala, Arg, Gln, Lys (dimer). The discrepancy for the lysine side chain at residue 340 is attributed to the dual nature of lysine, both hydrophobic and charged. The incorrect prediction of stability of the mutant with Asp at residue 340 is attributed to the fact that within the meanfield approach, we use the wild-type backbone configuration for all mutants, but low melting temperatures suggest a softening of the α-helices at the dimer–dimer interface. Overall, this initial application of meanfield theory toward a protein-solvent system is encouraging for the application of the theoretical model to more complex systems.
Resumo:
We study numerically the dynamics of a one-electron wavepacket in a two-dimensional random lattice with long-range correlated diagonal disorder in the presence of a uniform electric field. The time-dependent Schrodinger equation is used for this purpose. We find that the wavepacket displays Bloch-like oscillations associated with the appearance of a phase of delocalized states in the strong correlation regime. The amplitude of oscillations directly reflects the bandwidth of the phase and allows us to measure it. The oscillations reveal two main frequencies whose values are determined by the structure of the underlying potential in the vicinity of the wavepacket maximum.
Simulating quantum interference in a three-level system with perpendicular transition dipole moments
Resumo:
We consider a three-level V-type atomic system with the ground state coupled by a laser field to only one of the excited states, and with the two excited states coupled together by a dc field. Although the dipole moments of the two dipole-allowed transitions are assumed perpendicular, we demonstrate that this system emulates to a large degree a three-level system with parallel dipole moments-the latter being a system that exhibits quantum interference and displays a number of interesting features. As examples, we show that the system can produce extremely large values for the intensity-intensity correlation function, and that its resonance fluorescence spectrum can display ultranarrow lines. The dressed states for this system are identified, and the spectral features are interpreted in terms of transitions among these dressed states. We also show that this system is capable of exhibiting considerable squeezing.
Resumo:
Objective: The Temptation and Restraint Inventory (TRI) is commonly used to measure drinking restraint in relation to problem drinking behavior. However, as yet the TRI has not been validated in a clinical group with alcohol dependence. Method: Male (n = 111) and female (n = 57) inpatients with DSM-IV diagnosed alcohol dependence completed the TRI and measures of problem drinking severity, including the Alcohol Dependence Scale and the quantity, frequency and week total of alcohol consumed. Results: The factor structure of the TRI was replicated in the alcohol dependent sample. Cognitive Emotional Preoccupation (CEP), one of the two higher order factors of the TRI, demonstrated sound predictive power toward all dependence severity indices. The other higher order factor, Cognitive Behavioral Control (CBC), was related to frequency of drinking. There was limited support for the CEP/CBC interactional model of drinking restraint. Conclusions: Although the construct validity of the TRI was sound, the measure appears more useful in understanding the development, maintenance and severity of alcohol-related problems in nondependent drinkers. The TRI may show promise in detecting either continuous drinking or heavy episodic type dependent drinkers.
Resumo:
Sensory cells usually transmit information to afferent neurons via chemical synapses, in which the level of noise is dependent on an applied stimulus. Taking into account such dependence, we model a sensory system as an array of LIF neurons with a common signal. We show that information transmission is enhanced by a nonzero level of noise. Moreover, we demonstrate a phenomenon similar to suprathreshold stochastic resonance with additive noise. We remark that many properties of information transmission found for the LIF neurons was predicted by us before with simple binary units [Phys. Rev. E 75, 021121 (2007)]. This confirmation of our predictions allows us to point out identical roots of the phenomena found in the simple threshold systems and more complex LIF neurons.
Resumo:
Abnormalities in fronto-limbic-striatal white matter (WM) have been reported in bipolar disorder (BD), but results have been inconsistent across studies. Furthermore, there have been no detailed investigations as to whether acute mood states contribute to microstructural changes in WM tracts. In order to compare fiber density and structural integrity within WM tracts between BD depression and remission, whole-brain fractional anisotropy (FA) and mean diffusivity (MD) were assessed in 37 bipolar I disorder (BD-I) patients (16 depressed and 21 remitted), and 26 healthy individuals with diffusion tensor imaging. Significantly decreased FA and increased MD in bilateral prefronto-limbic-striatal white matter and right inferior fronto-occipital, superior and inferior longitudinal fasciculi were shown in all BD-I patients versus controls, as well as in depressed BD-I patients compared to both controls and remitted BD-I patients. Depressed BD-I patients also exhibited increased FA in the ventromedial prefrontal cortex. Remitted BD-I patients did not differ from controls in FA or MD. These findings suggest that BD-I depression may be associated with acute microstructural WM changes.
Resumo:
A probabilistic indirect adaptive controller is proposed for the general nonlinear multivariate class of discrete time system. The proposed probabilistic framework incorporates input–dependent noise prediction parameters in the derivation of the optimal control law. Moreover, because noise can be nonstationary in practice, the proposed adaptive control algorithm provides an elegant method for estimating and tracking the noise. For illustration purposes, the developed method is applied to the affine class of nonlinear multivariate discrete time systems and the desired result is obtained: the optimal control law is determined by solving a cubic equation and the distribution of the tracking error is shown to be Gaussian with zero mean. The efficiency of the proposed scheme is demonstrated numerically through the simulation of an affine nonlinear system.
Resumo:
We have investigated information transmission in an array of threshold units that have signal-dependent noise and a common input signal. We demonstrate a phenomenon similar to stochastic resonance and suprathreshold stochastic resonance with additive noise and show that information transmission can be enhanced by a nonzero level of noise. By comparing system performance to one with additive noise we also demonstrate that the information transmission of weak signals is significantly better with signal-dependent noise. Indeed, information rates are not compromised even for arbitrary small input signals. Furthermore, by an appropriate selection of parameters, we observe that the information can be made to be (almost) independent of the level of the noise, thus providing a robust method of transmitting information in the presence of noise. These result could imply that the ability of hair cells to code and transmit sensory information in biological sensory systems is not limited by the level of signal-dependent noise. © 2007 The American Physical Society.
Resumo:
Key words: Markov-modulated queues, waiting time, heavy traffic.
Resumo:
2000 Mathematics Subject Classification: 60K25.