991 resultados para In vitro assay
Resumo:
Dissertation to obtain a Master Degree in Biotechnology
Resumo:
Recent changes in regulatory requirements and social views on animal testing have incremented the development of reliable alternative tests for predicting skin and ocular irritation potential of products based on new raw materials. In this regard, botanical ingredients used in cosmetic products are among those materials, and should be carefully reviewed concerning the potential presence of irritant constituents. In particular, cosmetic products used on the face, in vicinity of the eyes or that may come in contact with mucous membranes, should avoid botanical ingredients that contain, or are suspected to contain, such ingredients. In this study, we aimed to evaluate the effect of a new cosmetic ingredient, namely, coffee silverskin (CS), with an in vitro skin and ocular irritation assay using reconstructed human epidermis, EpiSkin™, and human corneal epithelial model, SkinEthics™ HCE, and an in vivo assay. Three different extracts of CS were evaluated. The histology of the models after extracts applications was analysed. The in vitro results demonstrated that extracts were not classified as irritant and the histological analyses proved that extracts did not affect both models structure. The content of caffeine, 5-hydroxymethyl furfural and chlorogenic acid was quantified after the epidermal assay. The in vivo test carried out with the most promising extract (hydroalcoholic) showed that, with respect to irritant effects, these extracts can be regarded as safe for topical application.
Resumo:
Terrestrial plants have been demonstrated to be sources of antimalarial compounds. In Cuba, little is known about antimalarial potentials of plant species used as medicinals. For that reason, we evaluated the antimalarial activity of 14 plant species used in Cuba as antimalarial, antipyretic and/or antiparasitic. Hydroalcoholic extracts were prepared and tested in vitro for the antimalarial activity against Plasmodium falciparum Ghana strain and over human cell line MRC-5 to determine cytotoxicity. Parasite multiplication was determined microscopically by the direct count of Giemsa stained parasites. A colorimetric assay was used to quantify cytotoxicity. Nine extracts showed IC50 values lower than 100 µg/mL against P. falciparum, four extracts were classified as marginally active (SI < 4), one as partially active (Parthenium hysterophorus) exhibiting SI equal to 6.2 and two extracts as active (Bambusa vulgaris and Punica granatum), showing SI > 10. B. vulgaris showed the most potent and specific antiplasmodial action (IC50 = 4.7 µg/mL, SI = 28.9). Phytochemical characterization of active extracts confirmed the presence of triterpenoids in B. vulgaris and polar compounds with phenol free groups and fluorescent metabolites in both extracts as major phytocompounds, by thin layer chromatography. In conclusion, antimalarial use of B. vulgaris and P. hysterophorus was validated. B. vulgaris and P. granatum extracts were selected for follow-up because of their strong antimalarial activity.
Resumo:
Dissertation to obtain a Master Degree in Biotechnology
Resumo:
The quest for new antiparasitic alternatives has led researchers to base their studies on insights into biology, host-parasite interactions and pathogenesis. In this context, proteases and their inhibitors are focused, respectively, as druggable targets and new therapy alternatives. Herein, we proposed to evaluate the in vitro effect of the cysteine protease inhibitor E-64 on Giardia trophozoites growth, adherence and viability. Trophozoites (105) were exposed to E-64 at different final concentrations, for 24, 48 and 72 h at 37 °C. In the growth and adherence assays, the number of trophozoites was estimated microscopically in a haemocytometer, whereas cell viability was evaluated by a dye-reduction assay using MTT. The E-64 inhibitor showed effect on growth, adherence and viability of trophozoites, however, its better performance was detected in the 100 µM-treated cultures. Although metronidazole was more effective, the E-64 was shown to be able to inhibit growth, adherence and viability rates by ≥ 50%. These results reveal that E-64 can interfere in some crucial processes to the parasite survival and they open perspectives for future investigations in order to confirm the real antigiardial potential of the protease inhibitors.
Resumo:
INTRODUCTION: Fatty acids are abundant in vegetable oils. They are known to have antibacterial and antifungal properties. METHODS: Antifungal susceptibility was evaluated by broth microdilution assay following CLSI (formerly the NCCLS) guidelines against 16 fungal strains of clinical interest. RESULTS: In this work, fatty acid methyl esters (FAME) was able to inhibit 12 clinical strains of the pathogenic fungus Paracoccidioides brasiliensis and were also active in the bioautographic assay against Cladosporium sphaerospermum. CONCLUSIONS: FAME was a more potent antifungal than trimethoprim-sulfamethoxazole against P. brasiliensis under the experimental conditions tested.
Resumo:
INTRODUCTION: Little is known about the early events in the interaction between Paracoccidioides brasiliensis and its host. To understand the effect of carbohydrates in the interaction between the fungus and epithelial cell in culture, we analyzed the influence of different carbohydrate solutions on the adhesion of P. brasiliensis yeast cells to CCL-6 cells in culture. METHODS: Fungal cells were cultivated with the epithelial cell line, and different concentrations of D-fucose, N-acetyl-glucosamine, D-mannose, D-glucosamine, D-galactosamine, sorbitol and fructose were added at the beginning of the experiment. Six hours after the treatment, the cells were fixed and observed by light microscopy. The number of P. brasiliensis cells that were adhered to the CCL-6 monolayer was estimated. RESULTS: The number of adhesion events was diminished following treatments with D-fucose, N-acetyl-glucosamine, D-mannose, D-glucosamine and D-galactosamine as compared to the untreated controls. Sorbitol and fructose-treated cells had the same adhesion behavior as the observed in the control. P. brasiliensis propagules were treated with fluorescent lectins. The FITC-labeled lectins WGA and Con-A bound to P. brasiliensis yeast cells, while SBA and PNA did not. CONCLUSIONS: The perceptual of adhesion between P. brasiliensis and CCL-6 cells decreased with the use of D-mannose, N-acetyl-glucosamine and D-glucosamine. The assay using FITC-labeled lectins suggests the presence of N-acetyl-glucosamine, α-mannose and α-glucose on the P. brasiliensis cell surface. An enhanced knowledge of the mediators of adhesion on P. brasiliensis could be useful in the future for the development of more efficient and less harmful methods for disease treatment and control.
Resumo:
Introduction There are few studies reporting the antifungal activities of Lippia alba extracts. Methods A broth microdilution assay was used to evaluate the antifungal effects of Lippia alba extracts against seven yeast species of Candida and Cryptococcus. The butanol fraction was investigated by gas chromatography-mass spectrometry. Results The butanol fraction showed the highest activity against Candida glabrata. The fraction also acted synergistically with itraconazole and fluconazole against C. glabrata. The dominant compounds in the butanol fraction were 2,2,5-trimethyl-3,4-hexanedione, 3,5-dimethyl-4-octanone and hexadecane. Conclusions The butanol fraction may be a good candidate in the search for new drugs from natural products with antifungal activity.
Resumo:
The severity and frequency of opportunistic fungal infections still growing, concomitantly to the increasing rates of antimicrobial drugs resistance. Natural matrices have been used over years due to its multitude of health benefits, including antifungal potential. Thus, the present work aims to evaluate the anti-Candida potential of the phenolic extract and individual phenolic compounds of Glycyrrhiza glabra L. (licorice), by disc diffusion assay, followed by determination of the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for both planktonic cells and biofilms. Licorice extract evidenced inhibitory potential against the nineteen tested Candida strains, but no pronounced effect was observed by testing the most abundant individual phenolic compounds. Candida tropicalis strains were the most sensible, followed by Candida glabrata, Candida parapsilosis and, then, Candida albicans. Lower MIC and MFC values were achieved to C. glabrata and C. tropicalis, which confirms its susceptibility to licorice extract; however, for C. tropicalis strains a higher variability was observed. Anti-biofilm potential was also achieved, being most evident in some C. glabrata and C. tropicalis strains. In general, a twice concentration of the MIC was necessary for planktonic cells to obtain a similar potential to that one observed for biofilms. Thus, an upcoming approach for new antifungal agents, more effective and safer than the current ones, is stablished; notwithstanding, further studies are necessary in order to understand its mechanism of action, as also to assess kinetic parameters.
Resumo:
Dissertação de mestrado em Bioquímica Aplicada
Resumo:
OBJECTIVE: This study aims to evaluate the citotoxic activity of two commonly used anti-depressants: paroxetine and bupropion. We also evaluated the in vitro natural killer activity (NKA) after incubating the blood samples with the antidepressants. METHODS: Peripheral blood samples from 15 healthy volunteers were collected and the mononuclear cells (PBMCs) were isolated and incubated for 24h with (or without = control cells) paroxetine and bupropion, in concentrations of 30, 100 and 1000 ng/ml. After the incubation period in both groups, the amount of dead cells was calculated using trypam blue technique. NKA was evaluated using the classic51Cr release assay. CONCLUSIONS: PBMCs dead cells occurred in both groups and in proportion to all pharmacological concentrations. Nevertheless, the NKA was not affected, even with the reduction in the number of effective cells.
Resumo:
Megazol, nifurtimox, benznidazol and allopurinol were investigated, by light and electron µscopy, for their action on T. cruzi. Both the direct effect upon amastigote and trypomastigote forms and the effect upon the interaction of heart muscle cells (HMC) with bloodstream trypomastigotes were studied. The proliferation of amastigotes in Warren medium was inhibited in a dose-dependent manner by megazol, nifurtimox and benznidazol. Treatment of amastigotes (25-50 µM/24 h) and trypomastigotes (25 µM/24h) led to several ultrastructural alterations in the parasites. These three drugs also had a potent effect on the treatment of infected heart muscle cells when added at the beginning of the interaction or after one or three days of infection. The interiorized parasites showed a similar pattern of ultrastructural alterations as observed by the direct effect on the amastigotes. The primary heart muscle cell culture proved to be a suitable model for the study of drugs on intracellular parasites. Likewise, the amastigote proliferation in axenic medium was shown to be an adequate assay for an initial trial of drugs. These parameters seem very reliable to us for a systematic investigation of the mechanism of action of new drugs.
Resumo:
D53 (RibomuntyR) is a composite vaccine made of immunogenic ribosomes from 4 bacterial species (Klebsiella pneumoniae, Haemophilus influenzae, Streptococcus pyogenes and Streptococcus pneumoniae) associated with a membrane proteoglycan from a non encapsulated strain of Klebsiella pneumoniae. D53 is a potent inducer of interleukin-1 production by mouse BALB/c spleen cells as shown by the C3H/HeJ thymocyte co-stimulation assay. Furthermore D53 triggers DNA synthesis by mouse spleen cells and induces the maturation of B lymphocytes into immunoglobulin secreting cells. Polyclonal B cell activation by D53 was readily achieved in the C3H/HeJ strain which is deficient in its response to E. coli lipopolysaccharide. The proliferative response to D53 was abrogated by removal of B cells from the spleen cell suspension, but it was not altered after depletion of T cells or adherent cells. D53 induced polyclonal B cell activation of spleen cells from athymic nude mice and from CBA/N mice. Each component of D53 induced polyclona B cell activation except ribosomes from Streptococcus pneumoniae. Each triggered Interleukin-1 synthesis except ribosomes from Klebsiella penumoniae. These in vitro properties may account for some of the in vivo immunostimulating properties of this composite vaccine.
Resumo:
The partial suppression of the cell-mediated immune response by Trypanosoma cruzi antigens in patients with Chagas' disease is demonstrated in a costimulation assay with T. cruzi antigens and Mycobacterium tuberculosis purified protein derivative (PPD) or Tetanus toxoid (TT). ononuclear cells from 13 patients with chagasic infection without evidence of heart disease, 10 patients with chagasic cardiomyopathy and 7 healthy blood donors were stimulated with antigen A (autoclaved epimastigotes), PPD, TT, PPD + A, PPD + TT and TT + A. The average percentage of suppression induced by costimulation of mononuclear cells with PPD and antigen A was 47.1% in patients with chagasic infection without heart disease (INF), 38.8% in patients with chagasic cardiomyopathy (CDM) and 23.3% in healthy controls. Similar values were observed when living trypomastigotes were used. A costimulatory study with PPD and TT, PPD and A and TT and A was carried out in 8 patients with chagasic infection, in order to evaluate the possibility that this difference could be due to a nonspecific inhibitory effect. The mean suppression induced by TT + PPD was -8.9, with TT + A was 52.7 and with PPD + A was 50.1. The data reported show that T. cruzi antigens induce a specific suppression of the proliferative responseof mononuclear cells, that might be relevant to the persistence of the parasite in the host.
Resumo:
The present report describes an alternative method for in vitro detection of HIV-1 -specific antibody secretion in 24h of culture employing as stimulant of peripheral blood mononuclear cells the disrupted inactivated whole virus adsorbed onto microwells in a commercial ELISA kit plates. The results obtained from this technique have showed high sensitivity and specificity since it was capable of detecting HIV-1 infection early after birth. There were neither false-positivity nor false-negativity when blood samples obtained from HIV-1 seronegative asymptomatic individuals, and HIV-1 seropositive adult patients were analized. This rapid, low cost, simple, highly sensitive and specific assay can be extremely useful for early diagnosis of pediatric HIV infection.