972 resultados para Implant-retained dental prosthesis
Stress analysis in oral obturator prostheses over parallel and tilted implants: photoelastic imaging
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A prospective clinical study of maxillary sinus lift procedures in the posterior region of the maxilla, using only blood clot as filling material, was conducted. Seventeen patients underwent a maxillary sinus lift procedure; 20 maxillary sinus regions were operated on and a total of 25 implants were placed. The sinus mucosa was lifted together with the anterior wall of the osteotomized maxilla and supported by the implants placed. Computed tomography (CT) scans were obtained immediately postoperative (T-initial) and at 3 (T-1) and 51(T-2) months postoperative for the measurement of linear bone height and bone density (by grey tones). Only one implant was lost in the first stage (96% success). After dental prosthesis placement and during up to 51 months of follow-up, no implant was lost (100% success, second stage). The difference in mean bone height between T-initial (5.94 mm) and T-1 (13.14 mm), and between T-initial and T-2 (11.57 mm), was statistically significant (both P < 0.001); comparison between T-1 and T-2 also presented a statistical difference (P < 0.001). Bone density had increased at the end of the period analyzed, but this was not statistically significant (P > 0.05). Thus, the maxillary sinus lift technique with immediate implant placement, filling with blood clot only, may be performed with a high success rate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The modalities of treatment with prostheses over implants for total edentulous patients can be divided in fixed and removable prostheses (overdentures). The fixed prostheses modality has proven to offer better results as to the functional aspects and, results in higher longevity. Overdentures are considered as a modality of rehabilitation utilized to compensate the need for better retention, aside from augmenting chewing efficiency. Its use is justified by its facilitated hygiene, reduced surgical and prosthetic costs, reestablishment of labial support and elimination of the possibility of air escape. However, this option presents psychosocial downside, since the fact that it is considered a removable rehabilitation modality does not please the majority of patients. Although many patients prefer a fixed implant-supported prosthesis to a removable overdenture, frequently it is necessary to utilize an implant retained overdenture as an alternative to the treatment, due to anatomical, physiological, aesthetic, hygienic, and financial limitations regarding the patient. The objective of this study was to discuss a clinical case of a partially edentulous patient treated in the Implantodontic Surgery Post-Graduation Course from the Kenedy Dentistry Institute Mozarteum/Famosp Unit – Goiânia-Brazil), and submitted to osseointegrated implants surgical fixation techniques. A modality of differential diagnosis was established after osseointegration period, it aimed at facilitating the choice of a rehabilitation model that could favor the patient’s and professional`s expectations. Therefore the appreciated aspects were function, comfort, aesthetics, and especially the patient satisfaction.
Resumo:
Background: Considering the limited qualitative and quantitative bone in the posterior arch, this modality of prosthetic treatment could provide a positive emotional factor reestablished by immovability of the anterior fixed implant-supported segment. Objective: This clinical report demonstrates the possibility of achieving positive results with a removable partial denture connected to an implant-supported fixed prosthesis associated to an extra resilient attachment. Clinical significance: In cases of posterior mandibular and maxilla atrophy added to the patients desire against the bone graft, this kind of prosthetic treatment has an important place as an alternative.
Resumo:
OBJECTIVE: The aim of this study was to gather information and discuss the predictability of implant-supported prostheses in patients with bruxism by performing a literature review. METHODS: In order to select the studies included in this review, a detailed search was performed in PubMed and Medline databases, using the following key words: bruxism, dental implants, implant supported prosthesis, and dental restoration failure. Items that were included are: case reports, randomized controlled trials, in vitro studies, literature and systematic reviews, with or without meta-analysis, of the last 20 years that addressed the theme. Articles without abstracts, animal studies, articles in languages other than English and articles from journals unrelated to the dental field were excluded. RESULTS: after analysis according to inclusion and exclusion criteria, 28 articles were selected from a total of 54. It is known from the array of scientific articles which have assessed, either through retrospective, prospective or experimental studies, that the biomechanical and biological impact of bruxism on implant-supported prostheses is small, and that the literature has contributed little to exemplify the prosthetic limits of safety for the specialist from a clinical point of view. CONCLUSION: Although there is still no general consensus on this matter, most of the literature review articles do provide clinical guidelines that contribute to implant supported prostheses longevity and stability in patients with bruxism.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This finite element analysis (FEA) compared stress distribution on different bony ridges rehabilitated with different lengths of morse taper implants, varying dimensions of metal-ceramic crowns to maintain the occlusal alignment. Three-dimensional FE models were designed representing a posterior left side segment of the mandible: group control, 3 implants of 11 mm length; group 1, implants of 13 mm, 11 mm and 5 mm length; group 2, 1 implant of 11 mm and 2 implants of 5 mm length; and group 3, 3 implants of 5 mm length. The abutments heights were 3.5 mm for 13- and 11-mm implants (regular), and 0.8 mm for 5-mm implants (short). Evaluation was performed on Ansys software, oblique loads of 365N for molars and 200N for premolars. There was 50% higher stress on cortical bone for the short implants than regular implants. There was 80% higher stress on trabecular bone for the short implants than regular implants. There was higher stress concentration on the bone region of the short implants neck. However, these implants were capable of dissipating the stress to the bones, given the applied loads, but achieving near the threshold between elastic and plastic deformation to the trabecular bone. Distal implants and/or with biggest occlusal table generated greatest stress regions on the surrounding bone. It was concluded that patients requiring short implants associated with increased proportions implant prostheses need careful evaluation and occlusal adjustment, as a possible overload in these short implants, and even in regular ones, can generate stress beyond the physiological threshold of the surrounding bone, compromising the whole system.
Resumo:
Aim: Primary and secondary stabilities of immediately loaded mandibular implants restored with fixed prostheses (FP) using rigid or semirigid splinting systems were clinically and radiographically evaluated. Methods: Fifteen edentulous patients were rehabilitated using hybrid FP; each had 5 implants placed between the mental foramens. Two groups were randomly divided: group 1-FP with the conventional rigid bar splinting the implants and group 2-semi-rigid cantilever extension system with titanium bars placed in the 2 distal abutment cylinders. Primary stability was evaluated using resonance frequency analysis after installation of the implant abutments. The measurements were made at 3 times: T0, at baseline; T1, 4 months after implant placement; and T2, 8 months after implant placement. Presence of mobility and inflammation in the implant surrounding regions were checked. Stability data were submitted to statistical analysis for comparison between groups (P, 0.05). Results: Implant survival rate for the implants was of 100% in both groups. No significant differences in the mean implant stability quotient values were found for both groups from baseline and after the 8-month follow-up. Conclusion: The immediate loading of the implants was satisfactory, and both splinting conditions (rigid and semi-rigid) can be successfully used for the restoration of edentulous mandibles. (Implant Dent 2012;21:486-490)
Resumo:
From a recent perspective the morse-taper dental implants connections are increasingly being used as an alternative for replacement of a missing teeth. Nevertheless, there are a large variety of prosthetic components available on the market with some limitations regarding the final prothesis. This article demonstrated the difficulties and limitations of prosthesis implant-retained connections when using morse-taper implants (with a prosthetic index) case in which the surgical placement of the implant wasn’t successfully performed. The alternative to overcome this scenario was the technique using the tube screw over the top of a mini abutment component. It was possible to manufacture and to have satisfactory adaptation, achieving the satisfaction of the patient, restoring function and esthetics.
Resumo:
The main objective of this paper was to discuss the importance of the reverse planning as guidance to surgical procedures on immediate loading implant-retained prosthesis, presenting a case report. Such design aims to define anchorage orientation after determination of prosthetic design. This is quite important because the possibility of success of cases with this kind of planning may achieve high levels of satisfaction. Another important aspect is the possibility of fast and definitive restoration of patients’ function and aesthetics
Resumo:
The present study evaluated the interchangeability of prosthetic components for external hexagon implants by measuring the precision of the implant/abutment (I/A) interface with scanning electron microscopy. Ten implants for each of three brands (SIN, Conexão, Neodent) were tested with their respective abutments (milled CoCr collar rotational and non-rotational) and another of an alternative manufacturer (Microplant) in randomly arranged I/A combinations. The degree of interchangeability between the various brands of components was defined using the original abutment interface gap with its respective implant as the benchmark dimension. Accordingly, when the result for a given component placed on an implant was equal to or smaller then that gap measured when the original component of the same brand as the implant was positioned, interchangeability was considered valid. Data were compared with the Kruskal-Wallis test at 5% significance level. Some degree of misfit was observed in all specimens. Generally, the non-rotational component was more accurate than its rotational counterpart. The latter samples ranged from 0.6-16.9 µm, with a 4.6 µm median; and the former from 0.3-12.9 µm, with a 3.4 µm median. Specimens with the abutment and fixture from Conexão had larger microgap than the original set for SIN and Neodent (p<0.05). Even though the latter systems had similar results with their respective components, their interchanged abutments did not reproduce the original accuracy. The results suggest that the alternative brand abutment would have compatibility with all systems while the other brands were not completely interchangeable.
Resumo:
One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.