957 resultados para Imbalanced datasets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenic mechanisms of thromboangiitis obliterans (TAO) are not entirely known and the imbalance of matrix metalloproteinases (MMPs) plays a role in vascular diseases. We evaluated the MMP-2 and MMP-9 circulating levels and their endogenous tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in TAO patients with clinical manifestations. The study included 20 TAO patients (n = 10 female, n = 10 male) aged 38-59 years under clinical follow-up. The patients were classified into two groups: (1) TAO former smokers (n = 11) and (2) TAO active smokers (n = 9); the control group included normal volunteer non-smokers (n = 10) and active smokers without peripheral artery disease (n = 10). Patient plasma samples were used to analyze MMP-2 and MMP-9 levels using zymography, and TIMP-1 and TIMP-2 concentrations were determined by enzyme-linked immunosorbent assays. The analysis of MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios (which were used as indices of net MMP-2 and MMP-9 activity, respectively) showed significantly higher MMP-9/TIMP-1 ratios in TAO patients (p < 0.05). We found no significant differences in MMP-2/TIMP-2 ratios (p > 0.05). We found higher MMP-9 levels and decreased levels of TIMP-1 in the TAO groups (active smokers and former smokers), especially in active smokers compared with the other groups (all p < 0.05). MMP-2 and TIMP-2 were not significantly different in patients with TAO as compared to the control group (p > 0.05). In conclusion, our results showed increased MMP-9 and reduced TIMP-1 activity in TAO patients, especially in active smokers compared with non-TAO patients. These data suggest that smoke compounds could activate MMP-9 production or inhibit TIMP-1 activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Gender recognition has achieved impressive results based on the face appearance in controlled datasets. Its application in the wild and large datasets is still a challenging task for researchers. In this paper, we make use of classical techniques to analyze their performance in controlled and uncontrolled condition respectively with the LFW and MORPH datasets. For both sets the benchmarking protocol follows the 5-fold cross-validation proposed by the BEFIT challenge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] This paper analyzes the detection and localization performance of the participating face and eye algorithms compared with the Viola Jones detector and four leading commercial face detectors. Performance is characterized under the different conditions and parameterized by per-image brightness and contrast. In localization accuracy for eyes, the groups/companies focusing on long-range face detection outperform leading commercial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In CMS è stato lanciato un progetto di Data Analytics e, all’interno di esso, un’attività specifica pilota che mira a sfruttare tecniche di Machine Learning per predire la popolarità dei dataset di CMS. Si tratta di un’osservabile molto delicata, la cui eventuale predizione premetterebbe a CMS di costruire modelli di data placement più intelligenti, ampie ottimizzazioni nell’uso dello storage a tutti i livelli Tiers, e formerebbe la base per l’introduzione di un solito sistema di data management dinamico e adattivo. Questa tesi descrive il lavoro fatto sfruttando un nuovo prototipo pilota chiamato DCAFPilot, interamente scritto in python, per affrontare questa sfida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To propose the determination of the macromolecular baseline (MMBL) in clinical 1H MR spectra based on T(1) and T(2) differentiation using 2D fitting in FiTAID, a general Fitting Tool for Arrays of Interrelated Datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep tissue imaging has become state of the art in biology, but now the problem is to quantify spatial information in a global, organ-wide context. Although access to the raw data is no longer a limitation, the computational tools to extract biologically useful information out of these large data sets is still catching up. In many cases, to understand the mechanism behind a biological process, where molecules or cells interact with each other, it is mandatory to know their mutual positions. We illustrate this principle here with the immune system. Although the general functions of lymph nodes as immune sentinels are well described, many cellular and molecular details governing the interactions of lymphocytes and dendritic cells remain unclear to date and prevent an in-depth mechanistic understanding of the immune system. We imaged ex vivo lymph nodes isolated from both wild-type and transgenic mice lacking key factors for dendritic cell positioning and used software written in MATLAB to determine the spatial distances between the dendritic cells and the internal high endothelial vascular network. This allowed us to quantify the spatial localization of the dendritic cells in the lymph node, which is a critical parameter determining the effectiveness of an adaptive immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial independent component analysis (sICA) of functional magnetic resonance imaging (fMRI) time series can generate meaningful activation maps and associated descriptive signals, which are useful to evaluate datasets of the entire brain or selected portions of it. Besides computational implications, variations in the input dataset combined with the multivariate nature of ICA may lead to different spatial or temporal readouts of brain activation phenomena. By reducing and increasing a volume of interest (VOI), we applied sICA to different datasets from real activation experiments with multislice acquisition and single or multiple sensory-motor task-induced blood oxygenation level-dependent (BOLD) signal sources with different spatial and temporal structure. Using receiver operating characteristics (ROC) methodology for accuracy evaluation and multiple regression analysis as benchmark, we compared sICA decompositions of reduced and increased VOI fMRI time-series containing auditory, motor and hemifield visual activation occurring separately or simultaneously in time. Both approaches yielded valid results; however, the results of the increased VOI approach were spatially more accurate compared to the results of the decreased VOI approach. This is consistent with the capability of sICA to take advantage of extended samples of statistical observations and suggests that sICA is more powerful with extended rather than reduced VOI datasets to delineate brain activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In epidemiological work, outcomes are frequently non-normal, sample sizes may be large, and effects are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. We focus on binary outcomes, with the risk surface a smooth function of space. We compare penalized likelihood models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation. A Bayesian model using a spectral basis representation of the spatial surface provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial features while limiting overfitting and being more efficient computationally than other Bayesian approaches. One of the contributions of this work is further development of this underused representation. The spectral basis model outperforms the penalized likelihood methods, which are prone to overfitting, but is slower to fit and not as easily implemented. Conclusions based on a real dataset of cancer cases in Taiwan are similar albeit less conclusive with respect to comparing the approaches. The success of the spectral basis with binary data and similar results with count data suggest that it may be generally useful in spatial models and more complicated hierarchical models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptomics could contribute significantly to the early and specific diagnosis of rejection episodes by defining 'molecular Banff' signatures. Recently, the description of pathogenesis-based transcript sets offered a new opportunity for objective and quantitative diagnosis. Generating high-quality transcript panels is thus critical to define high-performance diagnostic classifier. In this study, a comparative analysis was performed across four different microarray datasets of heterogeneous sample collections from two published clinical datasets and two own datasets including biopsies for clinical indication, and samples from nonhuman primates. We characterized a common transcriptional profile of 70 genes, defined as acute rejection transcript set (ARTS). ARTS expression is significantly up-regulated in all AR samples as compared with stable allografts or healthy kidneys, and strongly correlates with the severity of Banff AR types. Similarly, ARTS were tested as a classifier in a large collection of 143 independent biopsies recently published by the University of Alberta. Results demonstrate that the 'in silico' approach applied in this study is able to identify a robust and reliable molecular signature for AR, supporting a specific and sensitive molecular diagnostic approach for renal transplant monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the RNetCDF package (version 1.6), an interface for reading and writing files in Unidata NetCDF format, and gives an introduction to the NetCDF file format. NetCDF is a machine independent binary file format which allows storage of different types of array based data, along with short metadata descriptions. The package presented here allows access to the most important functions of the NetCDF C-interface for reading, writing, and modifying NetCDF datasets. In this paper, we present a short overview on the NetCDF file format and show usage examples of the package.