996 resultados para Imaging segmentation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study the distribution of intramyocellular lipids (IMCL) in human calf muscles was determined by 1H-MR spectroscopic imaging (MRSI) measurements. An obstacle for MRSI measurements in the calf, including different muscles, is the inevitable inclusion of regions with high concentrations of extramyocellular lipids (EMCL). This can lead to signal bleeding and consequently to unpredictable overlaps of IMCL resonances with EMCL in voxels of interest. The results of this study show that signal bleeding from EMCL can be substantially reduced in voxels from calf muscles by the application of a lipid extrapolation (LE) procedure (Haupt et al., Magn Reson Med 1996;35:678). The spectra of all voxels located within muscle tissue were fitted, and the metabolite values were assigned to one of 10 different muscles based on image segmentation. Significant IMCL differences between some muscles were obtained, with high values in m. soleus and two to three times lower values in the tibialis anterior, tibialis posterior, and gastrocnemius muscles. In addition to gross differences between muscles, significant intersubject differences were observed in both IMCL content and distribution over different muscles. A significant correlation between fiber orientation (obtained from orientation-dependent dipolar coupling of creatine and taurine resonances) and IMCL content was found, indicating that IMCL content is directly correlated to biomechanical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutual information (PMI). This similarity metric, termed SPMI, enhances the registration accuracy by considering tissue classification probabilities as prior information, which is generated from an expectation maximization (EM) algorithm. Diffeomorphic demons is then adopted as the registration model and is optimized in a hierarchical framework (H-SPMI) based on different levels of anatomical structure as prior knowledge. The proposed method is evaluated using Brainweb synthetic data and clinical fMRI images. Both qualitative and quantitative assessment were performed as well as a sensitivity analysis to the segmentation error. Compared to the pure intensity-based approaches which only maximize mutual information, we show that the proposed algorithm provides significantly better accuracy on both synthetic and clinical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multi-scale, multi-physics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlasbased segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous analyses of aortic displacement and distension using computed tomography angiography (CTA) were performed on double-oblique multi-planar reformations and did not consider through-plane motion. The aim of this study was to overcome this limitation by using a novel computational approach for the assessment of thoracic aortic displacement and distension in their true four-dimensional extent. Vessel segmentation with landmark tracking was executed on CTA of 24 patients without evidence of aortic disease. Distension magnitudes and maximum displacement vectors (MDV) including their direction were analyzed at 5 aortic locations: left coronary artery (COR), mid-ascending aorta (ASC), brachiocephalic trunk (BCT), left subclavian artery (LSA), descending aorta (DES). Distension was highest for COR (2.3 ± 1.2 mm) and BCT (1.7 ± 1.1 mm) compared with ASC, LSA, and DES (p < 0.005). MDV decreased from COR to LSA (p < 0.005) and was highest for COR (6.2 ± 2.0 mm) and ASC (3.8 ± 1.9 mm). Displacement was directed towards left and anterior at COR and ASC. Craniocaudal displacement at COR and ASC was 1.3 ± 0.8 and 0.3 ± 0.3 mm. At BCT, LSA, and DES no predominant displacement direction was observable. Vessel displacement and wall distension are highest in the ascending aorta, and ascending aortic displacement is primarily directed towards left and anterior. Craniocaudal displacement remains low even close to the left cardiac ventricle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In diagnostic neuroradiology as well as in radiation oncology and neurosurgery, there is an increasing demand for accurate segmentation of tumor-bearing brain images. Atlas-based segmentation is an appealing automatic technique thanks to its robustness and versatility. However, atlas-based segmentation of tumor-bearing brain images is challenging due to the confounding effects of the tumor in the patient image. In this article, we provide a brief background on brain tumor imaging and introduce the clinical perspective, before we categorize and review the state of the art in the current literature on atlas-based segmentation for tumor-bearing brain images. We also present selected methods and results from our own research in more detail. Finally, we conclude with a short summary and look at new developments in the field, including requirements for future routine clinical use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medical doctors often do not trust the result of fully automatic segmentations because they have no possibility to make corrections if necessary. On the other hand, manual corrections can introduce a user bias. In this work, we propose to integrate the possibility for quick manual corrections into a fully automatic segmentation method for brain tumor images. This allows for necessary corrections while maintaining a high objectiveness. The underlying idea is similar to the well-known Grab-Cut algorithm, but here we combine decision forest classification with conditional random field regularization for interactive segmentation of 3D medical images. The approach has been evaluated by two different users on the BraTS2012 dataset. Accuracy and robustness improved compared to a fully automatic method and our interactive approach was ranked among the top performing methods. Time for computation including manual interaction was less than 10 minutes per patient, which makes it attractive for clinical use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all subregions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. METHODS AND MATERIALS Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. RESULTS Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm(3)) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm(3)) (P<0.001). CONCLUSIONS 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposed an automated 3D lumbar intervertebral disc (IVD) segmentation strategy from MRI data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based approach. After that, a three-dimensional (3D) variable-radius soft tube model of the lumbar spine column is built to guide the 3D disc segmentation. The disc segmentation is achieved as a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of fully-automatic localization and segmentation of 3D intervertebral discs (IVDs) from MR images. Our method contains two steps, where we first localize the center of each IVD, and then segment IVDs by classifying image pixels around each disc center as foreground (disc) or background. The disc localization is done by estimating the image displacements from a set of randomly sampled 3D image patches to the disc center. The image displacements are estimated by jointly optimizing the training and test displacement values in a data-driven way, where we take into consideration both the training data and the geometric constraint on the test image. After the disc centers are localized, we segment the discs by classifying image pixels around disc centers as background or foreground. The classification is done in a similar data-driven approach as we used for localization, but in this segmentation case we are aiming to estimate the foreground/background probability of each pixel instead of the image displacements. In addition, an extra neighborhood smooth constraint is introduced to enforce the local smoothness of the label field. Our method is validated on 3D T2-weighted turbo spin echo MR images of 35 patients from two different studies. Experiments show that compared to state of the art, our method achieves better or comparable results. Specifically, we achieve for localization a mean error of 1.6-2.0 mm, and for segmentation a mean Dice metric of 85%-88% and a mean surface distance of 1.3-1.4 mm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Post-mortem cardiac MR exams present with different contraction appearances of the left ventricle in cardiac short axis images. It was hypothesized that the grade of post-mortem contraction may be related to the post-mortem interval (PMI) or cause of death and a phenomenon caused by internal rigor mortis that may give further insights in the circumstances of death. METHOD AND MATERIALS The cardiac contraction grade was investigated in 71 post-mortem cardiac MR exams (mean age at death 52y, range 12-89y; 48 males, 23 females). In cardiac short axis images the left ventricular lumen volume as well as the left ventricular myocardial volume were assessed by manual segmentation. The quotient of both (LVQ) represents the grade of myocardial contraction. LVQ was correlated to the PMI, sex, age, cardiac weight, body mass and height, cause of death and pericardial tamponade when present. In cardiac causes of death a separate correlation was investigated for acute myocardial infarction cases and arrhythmic deaths. RESULTS LVQ values ranged from 1.99 (maximum dilatation) to 42.91 (maximum contraction) with a mean of 15.13. LVQ decreased slightly with increasing PMI, however without significant correlation. Pericardial tamponade positively correlated with higher LVQ values. Variables such as sex, age, body mass and height, cardiac weight and cause of death did not correlate with LVQ values. There was no difference in LVQ values for myocardial infarction without tamponade and arrhythmic deaths. CONCLUSION Based on the observation in our investigated cases, the phenomenon of post-mortem myocardial contraction cannot be explained by the influence of the investigated variables, except for pericardial tamponade cases. Further research addressing post-mortem myocardial contraction has to focus on other, less obvious factors, which may influence the early post-mortem phase too.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. METHODS Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b(+)Prph2(Rd2) /J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. RESULTS Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. CONCLUSIONS Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. TRANSLATIONAL RELEVANCE The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.