Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images.
Data(s) |
01/08/2015
|
---|---|
Resumo |
PURPOSE Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. METHODS Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b(+)Prph2(Rd2) /J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. RESULTS Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. CONCLUSIONS Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. TRANSLATIONAL RELEVANCE The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/72955/1/i2164-2591-4-4-9.pdf Dysli, Chantal-Simone; Enzmann, Volker; Sznitman, Raphael; Zinkernagel, Martin (2015). Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images. Translational vision science & technology, 4(4), p. 9. Association for Research in Vision and Ophthalmology 10.1167/tvst.4.4.9 <http://dx.doi.org/10.1167/tvst.4.4.9> doi:10.7892/boris.72955 info:doi:10.1167/tvst.4.4.9 info:pmid:26336634 urn:issn:2164-2591 |
Idioma(s) |
eng |
Publicador |
Association for Research in Vision and Ophthalmology |
Relação |
http://boris.unibe.ch/72955/ |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Dysli, Chantal-Simone; Enzmann, Volker; Sznitman, Raphael; Zinkernagel, Martin (2015). Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images. Translational vision science & technology, 4(4), p. 9. Association for Research in Vision and Ophthalmology 10.1167/tvst.4.4.9 <http://dx.doi.org/10.1167/tvst.4.4.9> |
Palavras-Chave | #610 Medicine & health |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |