980 resultados para INFINITE-DIMENSIONAL MANIFOLDS
Resumo:
Functional Data Analysis (FDA) deals with samples where a whole function is observed for each individual. A particular case of FDA is when the observed functions are density functions, that are also an example of infinite dimensional compositional data. In this work we compare several methods for dimensionality reduction for this particular type of data: functional principal components analysis (PCA) with or without a previous data transformation and multidimensional scaling (MDS) for diferent inter-densities distances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (households income distributions)
Resumo:
We give necessary and sufficient conditions for a pair of (generali- zed) functions 1(r1) and 2(r1, r2), ri 2X, to be the density and pair correlations of some point process in a topological space X, for ex- ample, Rd, Zd or a subset of these. This is an infinite-dimensional version of the classical “truncated moment” problem. Standard tech- niques apply in the case in which there can be only a bounded num- ber of points in any compact subset of X. Without this restriction we obtain, for compact X, strengthened conditions which are necessary and sufficient for the existence of a process satisfying a further re- quirement—the existence of a finite third order moment. We general- ize the latter conditions in two distinct ways when X is not compact.
Resumo:
This text contains papers presented at the Institute of Mathematics and its Applications Conference on Control Theory, held at the University of Strathclyde in Glasgow. The contributions cover a wide range of topics of current interest to theoreticians and practitioners including algebraic systems theory, nonlinear control systems, adaptive control, robustness issues, infinite dimensional systems, applications studies and connections to mathematical aspects of information theory and data-fusion.
Resumo:
Operator spaces of Hilbertian JC∗ -triples E are considered in the light of the universal ternary ring of operators (TRO) introduced in recent work. For these operator spaces, it is shown that their triple envelope (in the sense of Hamana) is the TRO they generate, that a complete isometry between any two of them is always the restriction of a TRO isomorphism and that distinct operator space structures on a fixed E are never completely isometric. In the infinite-dimensional cases, operator space structure is shown to be characterized by severe and definite restrictions upon finite-dimensional subspaces. Injective envelopes are explicitly computed.
Resumo:
An integration by parts formula is derived for the first order differential operator corresponding to the action of translations on the space of locally finite simple configurations of infinitely many points on Rd. As reference measures, tempered grand canonical Gibbs measures are considered corresponding to a non-constant non-smooth intensity (one-body potential) and translation invariant potentials fulfilling the usual conditions. It is proven that such Gibbs measures fulfill the intuitive integration by parts formula if and only if the action of the translation is not broken for this particular measure. The latter is automatically fulfilled in the high temperature and low intensity regime.
Resumo:
We study inverse problems in neural field theory, i.e., the construction of synaptic weight kernels yielding a prescribed neural field dynamics. We address the issues of existence, uniqueness, and stability of solutions to the inverse problem for the Amari neural field equation as a special case, and prove that these problems are generally ill-posed. In order to construct solutions to the inverse problem, we first recast the Amari equation into a linear perceptron equation in an infinite-dimensional Banach or Hilbert space. In a second step, we construct sets of biorthogonal function systems allowing the approximation of synaptic weight kernels by a generalized Hebbian learning rule. Numerically, this construction is implemented by the Moore–Penrose pseudoinverse method. We demonstrate the instability of these solutions and use the Tikhonov regularization method for stabilization and to prevent numerical overfitting. We illustrate the stable construction of kernels by means of three instructive examples.
Resumo:
As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.
Resumo:
Given a Lorentzian manifold (M, g), an event p and an observer U in M, then p and U are light conjugate if there exists a lightlike geodesic gamma : [0, 1] -> M joining p and U whose endpoints are conjugate along gamma. Using functional analytical techniques, we prove that if one fixes p and U in a differentiable manifold M, then the set of stationary Lorentzian metrics in M for which p and U are not light conjugate is generic in a strong sense. The result is obtained by reduction to a Finsler geodesic problem via a second order Fermat principle for light rays, and using a transversality argument in an infinite dimensional Banach manifold setup.
Resumo:
Generalizing Petrogradsky`s construction, we give examples of infinite-dimensional nil Lie algebras of finite Gelfand-Kirillov dimension over any field of positive characteristic.
Resumo:
We prove non-emptiness of the alpha-core for balanced games with non-ordered preferences, extending and generalizing in several aspects the results of Scarf (1971), Border (1984), Florenzano (1989), Yannelis (1991) and Kajii (1992). In particular we answer an open question in Kajii (1992) regarding the applicability of the non-emptiness results to models with infinite dimensional strategy spaces. We provide two models with Knightian and voting preferences for which the results of Scarf (1971) and Kajii (1992) cannot be applied while our non-emptiness result applies.
Resumo:
This thesis presents general methods in non-Gaussian analysis in infinite dimensional spaces. As main applications we study Poisson and compound Poisson spaces. Given a probability measure μ on a co-nuclear space, we develop an abstract theory based on the generalized Appell systems which are bi-orthogonal. We study its properties as well as the generated Gelfand triples. As an example we consider the important case of Poisson measures. The product and Wick calculus are developed on this context. We provide formulas for the change of the generalized Appell system under a transformation of the measure. The L² structure for the Poisson measure, compound Poisson and Gamma measures are elaborated. We exhibit the chaos decomposition using the Fock isomorphism. We obtain the representation of the creation, annihilation operators. We construct two types of differential geometry on the configuration space over a differentiable manifold. These two geometries are related through the Dirichlet forms for Poisson measures as well as for its perturbations. Finally, we construct the internal geometry on the compound configurations space. In particular, the intrinsic gradient, the divergence and the Laplace-Beltrami operator. As a result, we may define the Dirichlet forms which are associated to a diffusion process. Consequently, we obtain the representation of the Lie algebra of vector fields with compact support. All these results extends directly for the marked Poisson spaces.
Resumo:
We consider a field theory with target space being the two dimensional sphere S-2 and defined on the space-time S-3 x R. The Lagrangean is the square of the pull-back of the area form on S-2. It is invariant under the conformal group SO(4, 2) and the infinite dimensional group of area preserving diffeomorphisms of S-2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S-3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)