984 resultados para INDUCED PLANT
Resumo:
UV-B-induced oxidative damage and the protective effect of exopolysaccharides (EPS) in Microcoleus vaginatus, a cyanobacterium isolated from desert crust, were investigated. After being irradiated with UV-B radiation, photosynthetic activity (Fv/Fm), cellular total carbohydrates, EPS and sucrose production of irradiated cells decreased, while reducing sugars, reactive oxygen species (ROS) generation, malondialdehyde (MDA) production and DNA strand breaks increased significantly. However, when pretreated with 100 mg/L exogenous EPS, EPS production in the culture medium of UV-B stressed cells decreased significantly; Fv/Fm, cellular total carbohydrates, reducing sugars and sucrose synthase (SS) activity of irradiated cells increased significantly, while ROS generation, MDA production and DNA strand breaks of irradiated cells decreased significantly. The results suggested that EPS exhibited a significant protective effect on DNA strand breaks and lipid peroxidation by effectively eliminating ROS induced by UV-B radiation in M. vaginatus.
Resumo:
Our previous studies showed that microcystin-RR could induce oxidative damage in plant cells as they do with animal cells. However, whether microcystin can induce plant cell apoptosis is still unknown. In this study, the morphological changes of tobacco BY-2 suspension cells exposed to microcystin-RR were observed under light microscopy and transmission electron microscopy, and apoptosis was clearly distinguished by intense perinuclear chromatin margination, condensation of nuclear chromatin after 6d exposure of 50 mg/L (about 50 mu M) microcystin-RR. We also found that microcystin-RR can induce tobacco cell apoptosis in a dose- and time-dependent manner with flow cytometry analysis. Our study provides the first evidence that microcystins can induce plant cell apoptosis. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Microcystins are cyclic heptapeptide hepatoxins produced by cyanobacteria. It has been shown that microcystins have adverse effects on animals and on plants as well. Previous researches also indicated that microcystins were capable of inducing oxidative damage in animals both in vivo and in vitro. In this study, tobacco BY-2 suspension cell line was applied to examine the effects of microcystin-RR on plant cells. Cell viability and five biochemical parameters including reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPX) and peroxide dismutase (POD) were investigated when cells were exposed to 50 mg/L microcystin-RR. Results showed that microcystin-RR evoked decline of the cell viability to approximately 80% after treating for 144 h. ROS levels, POD and GPX activities of the treated cells were gradually increased with a time dependent manner. Changes of SOD and CAT activities were also detected in BY-2 cells. After 168 h recovery, ROS contents, POD, GPX and CAT activities returned to normal levels. These results suggest that the microcystin-RR can cause the increase of ROS contents in plant cells and these changes led to oxidant stress, at the same time, the plant cells would improve their antioxidant abilities to combat mirocystin-RR induced oxidative injury. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The present study was conducted to assess the potential toxicity of the effluent from a large sewage treatment plant (GBD-STP) in Beijing. Japanese medakas (Oryzias latipes) at reproduction active period were exposed to a serial of graded concentrations of the effluent or 100 ng l(-1) of 17-alpha-ethinylestradiol (EE2, positive control). Growth, gonadosomatic index (GSI), hepatosomatic index (HSI), reproductive success, induction potency of vitellogenin (VTG) in male fish and that of 7-ethoxyresorufin-o-deethylase activity (EROD) in male fish liver were used as test endpoints. The growth suppression of fish was observed in a dose-dependent manner, resulting in significant differences in both body length and body weight of medaka above 5% effluent. This effluent can inhibit the growth of gonad of medakas and are more sensitive to male than to female. At exposure concentration of 40% and higher, there was an unexpected decrease of HSI values, which may be resulted from sub-lethal toxicity of effluent to fish liver. VTG of plasma in males were induced in all exposure concentration levels, but not in a dose-dependent manner. The concentration of 5% effluent would be the lowest observed adverse effect level (LOAEL) affecting reproductive success when examining fertile individuals, fecundity and fertilization rate. The overt CYP1A response and higher reproductive toxicity may be indicative of low process efficiency of this STP. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A LIBS setup was built in the Institute of Modern Physics. In our experiments, LIBS spectra produced by infrared radiation of Nd : YAG nanosecond laser with 100 and 150 mJ pulse energy, respectively, were measured by fiber optic spectrometer in the ranges of 230-430 run and 430-1080 nm with a delay time of 1.7 and gate width of 2 ms for potato and lily samples prepared by vacuum freeze-dried technique. The lines from different metal elements such as K, Ca, Na, Mg, Fe, Al, Mn and Ti, and nonmetal elements such as C, N, O and H, and some molecular spectra from C-2, CaO, and CN were identified according to their wavelengths. The relative content of the six microelements, Ca, Na, K, Fe, Al, and Mg in the samples were analyzed according to their representative line intensities. By comparison we found that there are higher relative content of Ca and Na in lily samples and higher relative content of Mg in potato samples. The experimental results showed that LIBS technique is a fast and effective means for measuring and comparing the contents of microelements in plant samples.
Resumo:
In this paper, the capabilities of laser-induced break down spectroscopy (LIBS) for rapid analysis to multi-component plant are illustrated using a 1064 nm laser focused onto the surface of folium lycii. Based on homogeneous plasma assumption, nine of essential micronutrients in folium lycii are identified. Using Saha equation and Boltzmann plot method electron density and plasma temperature are obtained, and the irrelative concentration (Ca, Mg, Al, Si, Ti, Na, K, Li, and Sr) are obtained employing a semi-quantitative method.
Resumo:
The present work describes a liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method for rapid identification of phenylethanoid glycosides in plant extract from Plantago asiatica L. By using a binary mobile phase system consisting of 0.2% acetic acid and acetonitrile under gradient conditions, a good separation was achieved on a reversed-phase C-18 column. The [M-H](-) ions, the molecular weights, and the fragment ions of phenylethanoid glycosides were obtained in the negative ion mode using LC-ESI-MS. The identification of the phenylethanoid glycosides (peaks 1-3) in the extract of P. asiatica L. was based on matching their retention time, the detection of molecular ions, and the fragment ions obtained by collision-induced dissociation (CID) experiments with those of the authentic standards and data reported in the literature.
Resumo:
In order to understand the role of active oxygen species in mediating plant injuries induced by far-UV radiation, seedlings of Taxus cuspidata Sieb. et Zucc. were irradiated by far-UV rays in laboratory for 4 weeks. The production of organic free-radicals in detached needles, and the production of O-2(radical anion) and O-1(2) in isolated chloroplasts were detected weekly by electron spin resonance (ESR) to evaluate their relative importance. The results show that the cumulative effect of far-UV irradiation, is best indicated by the production of organic free radicals in the needles, O-2(radical anion) production in chloroplasts is the next. The enhancement of O-1(2) production in chloroplasts by the cumulative far-UV irradiation seems to be not so important as O-2(radical anion) in mediating injuries induced by, far-UV radiation because of its high background value.
Resumo:
Experimental studies of how global changes and human activities affect plant diversity often focus on broad measures of diversity and discuss the implications of these changes for ecosystem function. We examined how experimental warming and grazing affected species within plant groups of direct importance to Tibetan pastoralists: medicinal plants used by humans and palatable plants consumed by livestock. Warming resulted in species losses from both the medicinal and palatable plant groups; however, differential relative vulnerability to warming occurred. With respect to the percent of warming-induced species losses, the overall plant community lost 27%, medicinal plants lost 21%, and non-medicinal plants lost 40% of species. Losses of palatable and non-palatable species were similar to losses in the overall plant community. The deep-rootedness of medicinal plants resulted in lowered sensitivity to warming, whereas the shallow-rootedness of non-medicinal plants resulted in greater sensitivity to warming; the variable rooting depth of palatable and non-palatable plants resulted in an intermediate response to warming. Predicting the vulnerability of plant groups to human activities can be enhanced by knowledge of plant traits, their response to specific drivers, and their distribution within plant groups. Knowledge of the mechanisms through which a driver operates, and the evolutionary interaction of plants with that driver, will aid predictions. Future steps to protect ecosystem services furnished by medicinal and palatable plants will be required under the novel stress of a warmer climate. Grazing may be an important tool in maintaining some of these services under future warming.
Resumo:
Two species, Artemisia frigida Willd. (C-3, semishrub, and dominant on overgrazed sites) and Cleistogenes squarrosa (Trin.) Keng (C-4, perennial bunchgrass, and dominant or codominant on moderately grazed sites) were studied to determine the effects of defoliation, nitrogen (N) availability, competition, and their interactions on growth, biomass, and N allocation in a greenhouse experiment. The main treatments were: two nitrogen levels (NO = 0 mg N pot(-1), N1 = 60 mg N pot(-1)), two defoliation intensities (removing 60% of total aboveground biomass and no defoliation), and three competitive replacement series (monocultures of each species and mixtures at 0.5:0.5). Our results were inconsistent with our hypothesis on the adaptive mechanisms of A. frigida regarding the interactive effects of herbivory, N, and competition in determining its dominant position on overgrazed sites. Cleistogenes squarrosa will be replaced by A. frigida on over-grazed sites, although C. squarrosa had higher tolerance to defoliation than did A. frigida. Total biomass and N yield and N-15 recovery of C. squarrosa in mixed culture were consistently lower than in monocultures, whereas those of A. frigida grown in mixtures were consistently higher than in monocultures, suggesting higher competitive ability of A. frigida. Our results suggest that interspecific competitive ability may be of equal or greater importance than herbivory tolerance in determining herbivore-induced species replacement in semi-arid Inner Mongolian steppe. In addition, the dominance of A. frigida on overgrazed sites has been attributed to its ability to shift plant-plant interactions through (lap colonization, root niche differentiation, and higher resistance to water stress.
Resumo:
Theory suggests that economic instruments, such as pollution taxes or tradable permits, can provide more efficient technology adoption incentives than conventional regulatory standards. We explore this issue for an important industry undergoing dramatic decreases in allowed pollution - the U.S. petroleum industry's phasedown of lead in gasoline. Using a duration model applied to a panel of refineries from 1971-1995, we find that the pattern of technology adoption is consistent with an economic response to market incentives, plant characteristics, and alternative policies. Importantly, evidence suggests that the tradable permit system used during the phasedown provided incentives for more efficient technology adoption decisions.
Resumo:
A variety of genes expressed in preparasitic second-stage juveniles (J2) of plant-parasitic nematodes appear to be vulnerable to RNA interference (RNAi) in vitro by coupling double-stranded (ds)RNA soaking with the artificial stimulation of pharyngeal pumping. Also, there is mounting evidence that the in planta generation of nematode-specific double-stranded RNAs (dsRNAs) has real utility in the control of these pests. Although neuronally-expressed genes in Caenorhabditis elegans are commonly refractory to RNAi, we have discovered that neuronally-expressed genes in plant-parasitic nematodes are highly susceptible to RNAi and that silencing can be induced by simple soaking procedures without the need for pharyngeal stimulation. Since most front-line anthelmintics that are used for the control of nematode parasites of animals and humans act to disrupt neuromuscular coordination, we argue that intercellular signalling processes associated with neurons have much appeal as targets for transgenic plant-based control strategies for plant-parasitic nematodes. FMRFamide-like peptides (FLPs) are a large family of neuropeptides which are intimately associated with neuromuscular regulation, and our studies on flp gene function in plant-parasitic nematodes have revealed that their expression is central to coordinated locomotory activities. We propose that the high level of conservation in nervous systems across nematodes coupled with the RNAi-susceptibility of neuronally-expressed genes in plant-parasitic nematodes provides a valuable research tool which could be used to interrogate neuronal signalling processes in nematodes.
Resumo:
There is a growing interest in the use of geophysical methods to aid investigation and monitoring of complex biogeochemical environments, for example delineation of contaminants and microbial activity related to land contamination. We combined geophysical monitoring with chemical and microbiological analysis to create a conceptual biogeochemical model of processes around a contaminant plume within a manufactured gas plant site. Self-potential, induced polarization and electrical resistivity techniques were used to monitor the plume. We propose that an exceptionally strong (>800 mV peak to peak) dipolar SP anomaly represents a microbial fuel cell operating in the subsurface. The electromagnetic and electrical geophysical data delineated a shallow aerobic perched water body containing conductive gasworks waste which acts as the abiotic cathode of microbial fuel cell. This is separated from the plume below by a thin clay layer across the site. Microbiological evidence suggests that degradation of organic contaminants in the plume is dominated by the presence of ammonium and its subsequent degradation. We propose that the degradation of contaminants by microbial communities at the edge of the plume provides a source of electrons and acts as the anode of the fuel cell. We hypothesize that ions and electrons are transferred through the clay layer that was punctured during the trial pitting phase of the investigation. This is inferred to act as an electronic conductor connecting the biologically mediated anode to the abiotic cathode. Integrated electrical geophysical techniques appear well suited to act as rapid, low cost sustainable tools to monitor biodegradation.
Resumo:
Isoflavones are plant compounds, proposed to have health benefits in a variety of human diseases, including coronary heart disease and endocrine-responsive cancers. Their physiological effects include possible antioxidant activity, therefore suggesting a role for isoflavones in the prevention of male infertility. The aim of this study was to test the antioxidant effects of the isoflavones genistein and equol on sperm DNA integrity, assessed in vitro after hydrogen peroxide-mediated damage, using the cornet assay. Pre-treatment with genistein or equol at doses of 0.01-100 mumol/l significantly protected sperm DNA against oxidative damage. Both ascorbic acid (10-600 mumol/l) and alpha-tocopherol (1-100 mumol/l) also protected. Compared with ascorbic acid and alpha-tocopherol, added at physiological concentrations, genistein was the most potent antioxidant, followed by equol, ascorbic acid, and alpha-tocopherol. Genistein and equol added in combination were more protective than when added singly. Based on these preliminary data, which are similar to those observed previously in lymphocytes, these compounds may have a role to play in antioxidant protection against male infertility.