935 resultados para Hormone Agonists
Resumo:
Administration of human chorionic gonadotrophin (HCG) or ovine LH to immature rats primed with pregnant mare serum gonadotrophin (PMSG) stimulated the rate of synthesis of polyadenylic acid (poly A)-rich RNA in the ovaries. The rate of total RNA synthesis was not affected significantly by hormone treatment, whereas protein synthesis was enhanced. The increase in the rate of synthesis of poly(A)-rich RNA in the ovaries could be inferred as induction of messenger RNA synthesis after the hormone treatment. The poly(A)-rich nature of the isolated RNA was established by oligo(dT)–cellulose chromatography, binding to Millipore filter disks and hydridization with [3H]polyuridylic acid. The level of cyclic AMP in the ovaries of such rats was also raised after administration of LH, the increase coincided with the increase in the rate of synthesis of poly(A)-rich RNA. The implications of these results are discussed in the light of the biochemical basis of luteinization and the action of LH.
Resumo:
STUDIES with rats have shown that during lactation there is an inhibition of luteinising hormone (LH)-dependent physiological events, such as implantation1, and a return to oestrus cyclicity2. This inhibition has been shown to occur only during the intense suckling phase and it has been correlated with the high levels of prolactin present in the circulation at this time. Although exogenous prolactin could substitute for the effects of intense suckling, it could do so only under the permissive influence of minimal suckling stimulus. We have shown that there is, in these conditions, a lowering of LH levels, and that this is due to interference by prolactin with the pituitary responsiveness to LH-releasing hormone (LHRH) (K. Muralidhar, R. M. and N. R. M., unpublished). Using the lactating monkey, we have now demonstrated a similar inhibitory effect of prolactin on pituitary responsiveness to LHRH, suggesting a mechanism by which amenorrhoeic conditions are maintained during lactation.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) family ligands: GDNF, neurturin, persephin and artemin, signal through a receptor tyrosine kinase Ret by binding first to a co-receptor (GFRα1-4) that is attached to the plasma membrane. The GDNF family factors can support the survival of various peripheral and central neuronal populations and have important functions also outside the nervous system, especially in kidney development. Activating mutations in the RET gene cause tumours in neuroendocrine cells, whereas inactivating mutations in RET are found in patients with Hirschsprung s disease (HSCR) characterized by loss of ganglionic cells along the intestine. The aim of this study was to examine the in vivo functions of neurturin receptor GFRα2 and persephin receptor GFRα4 using knockout (KO) mice. Mice lacking GFRα2 grow poorly after weaning and have deficits in parasympathetic and enteric innervation. This study shows that impaired secretion of the salivary glands and exocrine pancreas contribute to growth retardation in GFRα2-KO mice. These mice have a reduced number of intrapancreatic neurons and decreased cholinergic innervation of the exocrine pancreas as well as reduced excitatory fibres in the myenteric plexus of the small intestine. This study also demonstrates that GFRα2-mediated Ret signalling is required for target innervation and maintenance of soma size of sympathetic cholinergic neurons and sensory nociceptive IB4-binding neurons. Furthermore, lack of GFRα2 in mice results in deficient perception of temperatures above and below thermoneutrality and in attenuated inflammatory pain response. GFRα4 is co-expressed with Ret predominantly in calcitonin-producing thyroid C-cells in the mouse. In this study GFRα4-deficient mice were generated. The mice show no gross developmental deficits and have a normal number of C-cells. However, young but not adult mice lacking GFRα4 have a lower production of calcitonin in thyroid tissue and consequently, an increased bone formation rate. Thus, GFRα4/Ret signalling may regulate calcitonin production. In conclusion, this study reveals that GFRα2/Ret signalling is crucial for the development and function of specific components of the peripheral nervous system and that GFRα4-mediated Ret signalling is required for controlling transmitter synthesis in thyroid C-cells.
Resumo:
Design and synthesis of a novel 3-hydroxy-cyclobut-3-ene-1,2-dione derivatives are reported and their in vitro thyroid hormone receptor selectivity has been evaluated in the thyroid luciferase receptor assay. The 3-[3,5-dichloro-4-(4-hydroxy-3-isopropylphenoxy)-phenylamino]-4-hydroxy-cyclobut-3-ene-1,2-dione 21 has shown selectivity towards thyroid hormone receptor β.
Resumo:
Identification of epitopes by modification studies has been reported by us recently. The method requires milligram quantities of antigen and since several proteins are not available in large quantities they are not amenable for such an investigation. One such protein is human follicle stimulating hormone (hFSH) whose mapping of epitopes is of importance in reproductive biology. Here we report a method that uses microgram quantities of hFSH to map a beta-specific epitope located at the receptor binding region. This identification has also been validated by the chemical modification method using heterologous antigen ovine follicle stimulating hormone (oFSH).
Resumo:
We have generated a recombinantBombyx morinuclear polyhedrosis virus, vBmhGH, harboring the full-length human growth hormone gene (2.4-kb genomic DNA, with four introns and the signal peptide sequences) under the control of the polyhedrin promoter. BmN cells in culture infected with the recombinant virus showed the presence of RNA corresponding to the authentic growth hormone mRNA as well as its incompletly processed precusor. Electrophoretic analysis and immunoprecipitation of proteins of recombinant virus-infected BmN cells revealed the presence of the growth hormone protein. Infection of silkworm larvae with vBmhGH led to the synthesis and efficient secretion of the protein into hemolymph. The recombinant human growth hormone was biologically active in a radioreceptor competition binding assay. The secreted protein was isolated and purified to homogeneity by a single step immunoaffinity chromatography, to a specific activity of 2.4 × 104U/mg. The recombinant hGH retained the immunological and biolological properties of the native peptide. We conclude that BmNPV vectors can be used successfully for expressing chromosomal genes harboring multiple introns.
Resumo:
Thyroid hormone (TH) plays an important role in maintaining a homeostasis in all the cells of our body. It also has significant cardiovascular effects, and abnormalities of its concentration can cause cardiovascular disease and even morbidity. Especially development of heart failure has been connected to low levels of thyroid hormone. A decrease in TH levels or TH-receptor binding adversely effects cardiac function. Although, this occurs in part through alterations in excitation-contraction and transport proteins, recent data from our laboratory indicate that TH also mediates changes in myocardial energy metabolism. Thyroid dysfunction may limit the heart s ability to shift substrate pathways and provide adequate energy supply during stress responses. Our goals of these studies were to determine substrate oxidation pattern in systemic and cardiac specific hypothyroidism at rest and at higher rates of oxygen demand. Additionally we investigated the TH mediated mechanisms in myocardial substrate selection and established the metabolic phenotype caused by a thyroid receptor dysfunction. We measured cardiac metabolism in an isolated heart model using 13Carbon isotopomer analyses with MR spectroscopy to determine function, oxygen consumption, fluxes and fractional contribution of acetyl-CoA to the citric acid cycle (CAC). Molecular pathways for changes in cardiac function and substrate shifts occurring during stress through thyroid receptor abnormalities were determined by protein analyses. Our results show that TH modifies substrate selection through nuclear-mediated and rapid posttranscriptional mechanisms. It modifies substrate selection differentially at rest and at higher rates of oxygen demand. Chronic TH deficiency depresses total CAC flux and selectively fatty acid flux, whereas acute TH supplementation decreases lactate oxidation. Insertion of a dominant negative thyroid receptor (Δ337T) alters metabolic phenotype and contractive efficiency in heart. The capability of the Δ337T heart to increase carbohydrate oxidation in response to stress seems to be limited. These studies provided a clearer understanding of the TH role in heart disease and shed light to identification of the molecular mechanisms that will facilitate in finding targets for heart failure prevention and treatment.
Resumo:
A Caucasian male aged 15 years presented with 2 years accelerated linear growth. He was 202 cm tall at presentation, with calculated mid-parental height of 173 cm. There were no features of hypopituitarism or acral growth. His visual fields and optic discs were normal...
Resumo:
Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat−/− mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat−/− mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat−/− mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat−/− mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat−/− mice.
Resumo:
Vasomotor hot flushes are complained of by approximately 75% of postmenopausal women, but their frequency and severity show great individual variation. Hot flushes have been present in women attending observational studies showing cardiovascular benefit associated with hormone therapy use, whereas they have been absent or very mild in randomized hormone therapy trials showing cardiovascular harm. Therefore, if hot flushes are a factor connected with vascular health, they could perhaps be one explanation for the divergence of cardiovascular data in observational versus randomized studies. For the present study 150 healthy, recently postmenopausal women showing a large variation in hot flushes were studied in regard to cardiovascular health by way of pulse wave analysis, ambulatory blood pressure and several biochemical vascular markers. In addition, the possible impact of hot flushes on outcomes of hormone therapy was studied. This study shows that women with severe hot flushes exhibit a greater vasodilatory reactivity as assessed by pulse wave analysis than do women without vasomotor symptoms. This can be seen as a hot flush-related vascular benefit. Although severe night-time hot flushes seem to be accompanied by transient increases in blood pressure and heart rate, the diurnal blood pressure and heart rate profiles show no significant differences between women without and with mild, moderate or severe hot flushes. The levels of vascular markers, such as lipids, lipoproteins, C-reactive protein and sex hormone-binding globulin show no association with hot flush status. In the 6-month hormone therapy trial the women were classified as having either tolerable or intolerable hot flushes. These groups were treated in a randomized order with transdermal estradiol gel, oral estradiol alone or in combination with medroxyprogesterone acetate, or with placebo. In women with only tolerable hot flushes, oral estradiol leads to a reduced vasodilatory response and increases in 24-hour and daytime blood pressures as compared to women with intolerable hot flushes receiving the same therapy. No such effects were observed with the other treatment regimes or in women with intolerable hot flushes. The responses of vascular biomarkers to hormone therapy are unaffected by hot flush status. In conclusion, hot flush status contributes to cardiovascular health before and during hormone therapy. Severe hot flushes are associated with an increased vasodilatory, and thus, a beneficial vascular status. Oral estradiol leads to vasoconstrictive changes and increases in blood pressure, and thus to possible vascular harm, but only in women whose hot flushes are so mild that they would probably not lead to the initiation of hormone therapy in clinical practice. Healthy, recently postmenopausal women with moderate to severe hot flushes should be given the opportunity to use hormone therapy alleviate hot flushes, and if estrogen is prescribed for indications other than for the control of hot flushes, transdermal route of administration should be favored.
Resumo:
Thirty percent of 70-year-old women have osteoporosis; after age of 80 its prevalence is up to 70%. Postmenopausal women with osteoporosis seem to be at an increased risk for cardiovascular events, and deterioration of oral health, as shown by attachment loss of teeth, which is proportional to the severity of osteoporosis. Osteoporosis can be treated with many different medication, e.g. estrogen and alendronate. We randomized 90 elderly osteoporotic women (65-80 years of age) to receive hormone therapy (HT)(2mg E2+NETA), 10mg alendronate, and their combination for two years and compared their effects on bone mineral density (BMD) and turnover, two surrogate markers of the risk of cardiovascular diseases, C-reactive protein (CRP) and E-selectin, as well as oral health. The effect of HT on health-related quality of life (HRQoL) was studied in the population-based cohort of 1663 postmenopausal women (mean age 68 yr) (585 estrogen users and 1078 non-users). BMD was measured with dual-energy X-ray absorptiometry (DXA) at 0, 12 and 24 months. Urinary N-telopeptide (NTX) of type I collagen, a marker of bone resorption, and serum aminoterminal propeptide of human type I procollagen (PINP), a marker of bone formation, were measured every six months of treatment. Serum CRP and E-selectin, were measured at 0, 6, and 12 months. Dental, and periodontal conditions, and gingival crevicular fluid (GCF) matrix metalloproteinase (MMP)-8 levels were studied to evaluate the oral health status and for the mouth symptoms a structured questionnaire was used. The HRQoL was measured with 15D questionnaire. Lumbar spine BMD increased similarly in all treatment groups (6.8-8.4% and 9.1-11.2%). Only HT increased femoral neck BMD at both 12 (4.9%) and 24 months (5.8%), at the latter time point the HT group differed significantly from the other groups. HT reduced bone marker levels of NTX and PINP significantly less than other two groups.Oral HT significantly increased serum CRP level by 76.5% at 6 and by 47.1% (NS) at 12 months, and decreased serum E-selectin level by 24.3% and 30.0%. Alendronate had no effect on these surrogate markers. Alendronate caused a decrease in the resting salivary flow rate and tended to increase GCF MMP-8 levels. Otherwise, there was no effect on the parameters of oral health. HT improved the HRQoL of elderly women significantly on the dimensions of usual activities, vitality and sexual activity, but the overall improvement in HRQoL was neither statistically significant nor clinically important. In conclusion, bisphosphonates might be the first option to start the treatment of postmenopausal osteoporosis in the old age.