994 resultados para Homogeneous sections method
Resumo:
Polymeric precursor solution was used to deposit by spin-coating pure and Mg doped LiNbO3 thin films on sapphire substrates. The effects of magnesium addition on crystallinity, morphology and optical properties of the annealed films were investigated. X-ray diffraction patterns indicate the oriented growth of the films. AFM studies show that the films are very homogeneous, dense and present smooth surfaces. The refractive index and optical losses obtained by the prism coupling method were influenced by the magnesium addition.
Resumo:
A new approach is proposed in this work for the treatment of boundary value problems through the Adomian's decomposition method. Although frequently claimed as accurate and having fast convergence rates, the original formulation of Adomian's method does not allow the treatment of homogeneous boundary conditions along closed boundaries. The technique here presented overcomes this difficulty, and is applied to the analysis of magnetohydrodynamic duct flows. Results are in good agreement with finite element method calculations and analytical solutions for square ducts. Therefore, new possibilities appear for the application of Adomian's method in electromagnetics.
Resumo:
Stoichiometric CaWO4 and SrWO4 thin films were synthesized using a chemical solution processing, the so-called polymeric precursor method. In this soft chemical method, soluble precursors such as strontium carbonate, calcium carbonate and tungstic acid, as starting materials, were mixed in an aqueous solution. The thin films were deposited on glass substrates by means of the spinning technique. The surface morphology and crystal structure of the thin films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Nucleation stages and surface morphology evolution of the thin films on glass substrates were studied by atomic force microscopy. The films nucleate at 300 degreesC, after the coalescence of small nuclei into larger grains yielding a homogeneous dense surface. XRD characterization of these films showed that the CaWO4 and SrWO4 phases crystallize at 400 degreesC from an inorganic amorphous phase. No intermediate crystalline phase was identified. The optical properties were also studied. It was found that CaWO4 and SrWO4 thin films have an optical band gap, E-gap=5.27 and 5.78 eV, respectively, of a direct transition nature. The excellent microstructural quality and chemical homogeneity confirmed that this soft solution processing provides an inexpensive and environmentally friendly route for the preparation of CaWO4 and SrWO4 thin films. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
New tungstate-based ceramic pigments, displaying ZnxNi1-xWO4 stoichiometry, were obtained at low temperature using a polymeric precursor method. The powder precursors were milled in an attritor mill in an alcoholic rnedium and heat treated for 12 h. yielding homogeneous and crystalline powder pigments. Characterization (TG/DTA, XRD, IR and colorimetry) showed that mass loss increased with increasing Zn contents. Despite the presence of secondary phases and impurities, the wolframite phase was present in all samples. IR analysis revealed bands related to Me-O and [WO6](6-) group stretching was observed. The intensity of the yellow color of the pigments increased with increasing amount of nickel. (c) 2007 Elsevier Ltd. All fights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We outline a method for registration of images of cross sections using the concepts of The Generalized Hough Transform (GHT). The approach may be useful in situations where automation should be a concern. To overcome known problems of noise of traditional GHT we have implemented a slight modified version of the basic algorithm. The modification consists of eliminating points of no interest in the process before the application of the accumulation step of the algorithm. This procedure minimizes the amount of accumulation points while reducing the probability of appearing of spurious peaks. Also, we apply image warping techniques to interpolate images among cross sections. This is needed where the distance of samples between sections is too large. Then it is suggested that the step of registration with GHT can help the interpolation automation by simplifying the correspondence between points of images. Some results are shown.
Resumo:
The soybean cyst nematode (Heterodera glycines) has become an increasingly severe problem in soybean production areas in Brazil. The development and use of resistant cultivars is the most efficient method of minimizing losses due to this pathogen. Our objective was to test the efficiency of an alternative method for screening soybean genotypes for resistance to H. glycines in field plots. The alternative method was compared to the standard method of sowing the test genotypes in fields found to be infested during the previous crop season. In the alternative method, the test genotypes are sown in the furrow following the uprooting of 45-day-old infected plants. The alternative method resulted in twice the cyst population and fewer escapes, and more consistent results than the standard method. The major advantage of the alternative method is that it permits screening in a more homogeneous distribution of H. glycines in the soil.
Resumo:
Polymeric precursor solution was used to deposit LiNbO3 thin films by dip coating on sapphire substrates. The effects of processing variables, such as heat treatment conditions and number of deposited layers, on crystallinity and morphology of the final films were investigated. X-ray diffraction patterns show the oriented growth of the films. The rocking curves, obtained around the (006) LiNbO3 peak, revealed that the shape peak and the FWHM value were influenced by the processing variables. According to these parameters, some films presented very homogeneous dense and smooth surfaces, as shown by the SEM and AFM studies.
Resumo:
The effects of heat-treatment temperature on LiNbO3 thin films prepared by the polymeric precursor method were investigated. The precursor solution was deposited on Si(111) substrates by dip coating. X-ray diffraction and thermal analyses revealed that the crystallization process occurred at a low temperature (420 °C) and led to films with no preferential orientation. High-temperature treatments promoted formation of the LiNb3O8 phase. Scanning electron microscopy, coupled with energy dispersive spectroscopy analyses, showed that the treatment temperature also affected the film microstructure. The surface texture - homogeneous, smooth, and pore-free at low temperature - turned into an `islandlike' microstructure for high-temperature treatments.
Resumo:
This work reports on the pure lithium tantalate (LiTaO3), europium (III)-doped LiTaO3 and magnesium (II)-europium (III)-doped LiTaO3 preparared by the polymeric precursor method, using four different powered samples of Eu3+ ion concentrations 0.1 to 1at %. Structural and optical properties of powders have been studied. The different possible sites occupied by the rare earth were examined. The phase contents and lattice parameters were studied by the Rietveld method and the structural disorder in the LiTaO3 host caused by Eu3+ ions was analyzed. Results indicated LiTaO3 free of secondary phases at 650°C and the photoluminescence (PL) emission spectra showed the characteristic sharp emission bands given by Eu3+ ions when they are excited at a wavelength of 399 nm. An increase of dopants contents caused a non-homogeneous broadening and showed a slightly larger one when Mg was added. A displacement of the transition 5D0-7F0 to shorter wavelengths as function of Eu3+ concentration was also noticed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work CdMoO 4 nanoparticles were obtained under hydrothermal conditions using microwave radiation (2.45 GHz) (MH) at 100°C for different times. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure CdMoO 4 phases were obtained. FEG-SEM powders present large-scale and homogeneous particles with microspheres-like morphology. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) emission in the green wavelength range of 540-546 nm. Photocatalytic activity of CdMoO 4 nanocrystals was examined by monitoring the degradation of rhodamine B dye.
Resumo:
This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO 3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO 3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal-oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Includes bibliography
Resumo:
Cystalline ceria (CeO2) nanoparticles have been synthesized by a simple and fast microwave-assisted hydrothermal (MAH) under NaOH, KOH, and NH4OH mineralizers added to a cerium ammonium nitrate aqueous solution. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transformed-IR and Raman spectroscopies. Rietveld refinement reveals a cubic structure with a space group Fm3m while infrared data showed few traces of nitrates. Field emission scanning microcopy (FEG-SEM) revealed a homogeneous size distribution of nanometric CeO2 nanoparticles. The MAH process in KOH and NaOH showed most effective to dehydrate the adsorbed water and decrease the hydrogen bonding effect leaving a weakly agglomerated powder of hydrated ceria. TEM micrographs of CeO2 synthesized under MAH conditions reveal particles well-dispersed and homogeneously distributed. The MAH enabled cerium oxide to be synthesized at 100 °C for 8 min. © 2012 Elsevier B.V. All rights reserved.