998 resultados para Heredity, Human
Resumo:
Despite the identification of SRY as the testis-determining gene in mammals, the genetic interactions controlling the earliest steps of male sex determination remain poorly understood. In particular, the molecular lesions underlying a high proportion of human XY gonadal dysgenesis, XX maleness and XX true hermaphroditism remain undiscovered. A number of screens have identified candidate genes whose expression is modulated during testis or ovary differentiation in mice, but these screens have used whole gonads, consisting of multiple cell types, or stages of gonadal development well beyond the time of sex determination. We describe here a novel reporter mouse line that expresses enhanced green fluorescent protein under the control of an Sf1 promoter fragment, marking Sertoli and granulosa cell precursors during the critical period of sex determination. These cells were purified from gonads of male and female transgenic embryos at 10.5 dpc (shortly after Sry transcription is activated) and 11.5 dpc (when Sox9 transcription begins), and their transcriptomes analysed using Affymetrix genome arrays. We identified 266 genes, including Dhh, Fgf9 and Ptgds, that were upregulated and 50 genes that were downregulated in 11.5 dpc male somatic gonad cells only, and 242 genes, including Fst, that were upregulated in 11.5 dpc female somatic gonad cells only. The majority of these genes are novel genes that lack identifiable homology, and several human orthologues were found to map to chromosomal loci implicated in disorders of sexual development. These genes represent an important resource with which to piece together the earliest steps of sex determination and gonad development, and provide new candidates for mutation searching in human sexual dysgenesis syndromes.
Resumo:
Purple acid phosphatases are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. Only one isoform of similar to 35 kDa has been isolated from animals, where it is associated with bone resorption and microbial killing through its phosphatase activity, and hydroxyl radical production, respectively. Using the sensitive PSI-BLAST search method, sequences representing new purple acid phosphatase-like proteins have been identified in mammals, insects and nematodes. These new putative isoforms are closely related to the similar to 55 kDa purple acid phosphatase characterized from plants. Secondary structure prediction of the new human isoform further confirms its similarity to a purple acid phosphatase from the red kidney bean. A structural model for the human enzyme was constructed based on the red kidney bean purple acid phosphatase structure. This model shows that the catalytic centre observed in other purple acid phosphatases is also present in this new isoform. These observations suggest that the sequences identified in this study represent a novel subfamily of plant-like purple acid phosphatases in animals and humans. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We studied inheritance at three microsatellite loci in eight F-1 and two F-2 families of the body (clothes) louse of humans, Pediculus humanus. The alleles of heterozygous female-parents were always inherited in a Mendelian fashion in these families. Alleles from heterozygous male-parents, however, were inherited in two different ways: (i) in a Mendelian fashion and (ii) in a non-Mendelian fashion, where males passed to their offspring only one of their two alleles, that is, 100% nonrandom transmission. In male body lice, where there was non-Mendelian inheritance, the paternally inherited set of alleles was eliminated. We interpret this pattern of inheritance as evidence for extreme transmission ratio distortion of paternal alleles in this species.
Resumo:
We identified a transcript named 11M2 on the basis of its strong male-specific expression pattern in the developing mouse gonad. 11M2 was found to be expressed by gonad primordial germ cells (PGCs) of both sexes and down-regulated in female PGCs as they enter prophase I of the first meiotic division, similar to the expression of Oct4. Mouse EST analysis revealed expression only in early-stage embryos, embryonic stem cells and pre-meiotic germ cells. 11M2 corresponds to a recently reported gene variously known as PGC7, stella or Dppa3. We have identified the human orthologue of Dppa3 and find by human EST analysis that it is expressed in human testicular germ cell tumours but not in normal human somatic tissues. The expression patterns of mouse and human DPPA3, in undifferentiated embryonic cells, embryonic germ cells and adult germ cell tumours, together suggest a role for this gene in maintaining cell pluripotentiality.
Resumo:
The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.