114 resultados para Hepatotoxicity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate whether a decrease in carnitine body stores is a risk factor for valproic acid (VPA)-associated hepatotoxicity and to explore the effects of VPA on carnitine homeostasis in mice with decreased carnitine body stores. Therefore, heterozygous juvenile visceral steatosis (jvs)(+/-) mice, an animal model with decreased carnitine stores caused by impaired renal reabsorption of carnitine, and the corresponding wild-type mice were treated with subtoxic oral doses of VPA (0.1 g/g b.wt./day) for 2 weeks. In jvs(+/-) mice, but not in wild-type mice, treatment with VPA was associated with the increased plasma activity of aspartate aminotransferase and alkaline phosphatase. Furthermore, jvs(+/-) mice revealed reduced palmitate metabolism assessed in vivo and microvesicular steatosis of the liver. The creatine kinase activity was not affected by treatment with VPA. In liver mitochondria isolated from mice that were treated with VPA, oxidative metabolism of l-glutamate, succinate, and palmitate, as well as beta-oxidation of palmitate, were decreased compared to vehicle-treated wild-type mice or jvs(+/-) mice. In comparison to vehicle-treated wild-type mice, vehicle-treated jvs(+/-) mice had decreased carnitine plasma and tissue levels. Treatment with VPA was associated with an additional decrease in carnitine plasma (wild-type mice and jvs(+/-) mice) and tissue levels (jvs(+/-) mice) and a shift of the carnitine pools toward short-chain acylcarnitines. We conclude that jvs(+/-) mice reveal a more accentuated hepatic toxicity by VPA than the corresponding wild-type mice. Therefore, decreased carnitine body stores can be regarded as a risk factor for hepatotoxicity associated with VPA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of cyclosporine A (CyA) into the immunosuppressive therapy has significantly improved the results of heart transplantation (HTX). Its nephrotoxicity and hepatotoxicity, however, often limit the perioperative and postoperative use of this drug. The purpose of this retrospective study was to evaluate the effect of early postoperative CyA blood levels on the incidence of early as well as late cardiac rejection and patients' survival. Between October 1985 and June 1991, HTX was performed in 311 patients. Standard immunosuppression consisted of azathioprine (1-2 mg/kg), prednisolone (0.5 to 0.1 mg/kg) and CyA. Rabbit-antithymocyte-globulin (RATG - 1.5 mg/kg) was administered for the first 4 days postoperatively. Moderate rejection was treated with 3 x 500 mg methylprednisolone, severe rejection with RATG (1.5 mg/kg three times a day). Patients were excluded from this study because of a positive cross-matching, early death unrelated to rejection or alternate forms of immunosuppression (n = 111). Follow-up was complete in 200 patients (mean age 44 +/- 11; 18 female, 182 male; 204,233 patient days) with a total of 5380 biopsies. The cohort was divided into group I (no CyA for day 0 to 2; n = 108) and group II (CyA during day 0 to 2; n = 92) according to the onset of CyA therapy. In 101 patients (group A) the mean CyA blood level was less than 150 ng/ml from day 0 to 14 and in 99 patients more than 150 ng/ml (group B).(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To review our clinical experience and determine if there are appropriate signs and symptoms to consider POLG sequencing prior to valproic acid (VPA) dosing in patients with seizures. METHODS: Four patients who developed VPA-induced hepatotoxicity were examined for POLG sequence variations. A subsequent chart review was used to describe clinical course prior to and after VPA dosing. RESULTS: Four patients of multiple different ethnicities, age 3-18 years, developed VPA-induced hepatotoxicity. All were given VPA due to intractable partial seizures. Three of the patients had developed epilepsia partialis continua. The time from VPA exposure to liver failure was between 2 and 3 months. Liver failure was reversible in one patient. Molecular studies revealed homozygous p.R597W or p.A467T mutations in two patients. The other two patients showed compound heterozygous mutations, p.A467T/p.Q68X and p.L83P/p.G888S. Clinical findings and POLG mutations were diagnostic of Alpers-Huttenlocher syndrome. CONCLUSION: Our cases underscore several important findings: POLG mutations have been observed in every ethnic group studied to date; early predominance of epileptiform discharges over the occipital region is common in POLG-induced epilepsy; the EEG and MRI findings varying between patients and stages of the disease; and VPA dosing at any stage of Alpers-Huttenlocher syndrome can precipitate liver failure. Our data support an emerging proposal that POLG gene testing should be considered in any child or adolescent who presents or develops intractable seizures with or without status epilepticus or epilepsia partialis continua, particularly when there is a history of psychomotor regression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation, and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develops. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients living with a spinal cord injury (SCI) often develop chronic neuropathic pain (CNP). Unfortunately, the clinically approved, current standard of treatment, gabapentin, only provides temporary pain relief. This treatment can cause numerous adverse side effects that negatively affect the daily lives of SCI patients. There is a great need for alternative, effective treatments for SCI-dependent CNP. Minocycline, an FDA-approved antibiotic, has been widely prescribed for the treatment of acne for several decades. However, recent studies demonstrate that minocycline has neuroprotective properties in several pre-clinical rodent models of CNS trauma and disease. Pre-clinical studies also show that short-term minocycline treatment can prevent the onset of CNP when delivered during the acute stage of SCI and can also transiently attenuate established CNP when delivered briefly during the chronic stage of SCI. However, the potential to abolish or attenuate CNP via long-term administration of minocycline after SCI is unknown. The purpose of this study was to investigate the potential efficacy and safety of long-term administration of minocycline to abolish or attenuate CNP following SCI. A severe spinal contusion injury was administered on adult, male, Sprague-Dawley rats. At day 29 post-injury, I initiated a three-week treatment regimen of daily administration with minocycline (50 mg/kg), gabapentin (50 mg/kg) or saline. The minocycline treatment group demonstrated a significant reduction in below-level mechanical allodynia and above- level hyperalgesia while on their treatment regimen. After a ten-day washout period of minocycline, the animals continued to demonstrate a significant reduction in below-level mechanical allodynia and above-level hyperalgesia. However, minocycline-treated animals exhibited abnormal weight gain and hepatotoxicity compared to gapabentin-treated or vehicle-treated subjects.The results support previous findings that minocycline can attenuate CNP after SCI and suggested that minocycline can also attenuate CNP via long-term delivery of minocycline after SCI (36). The data also suggested that minocycline had a lasting effect at reducing pain symptoms. However, the adverse side effects of long-term use of minocycline should not be ignored in the rodent model. Gabapentin treatment caused a significant decrease in below-level mechanical allodynia and below-level hyperalgesia during the treatment regimen. Because gabapentin treatment has an analgesic effect at the concentration I administered, the results were expected. However, I also found that gabapentin-treated animals demonstrated a sustained reduction in pain ten days after treatment withdrawal. This result was unexpected because gabapentin has a short half-life of 1.7 hours in rodents and previous studies have demonstrated that pre-drug pain levels return shortly after withdrawal of treatment. Additionally, the gabapentin-treated animals demonstrated a significant and sustained increase in rearing events compared with all other treatment groups which suggested that gabapentin treatment was not only capable of reducing pain long-term but may also significantly improve trunk stability or improve motor function recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nrf2, a member of the “cap ‘n collar” group of transcription factors, is important for protecting cells against oxidative damage. We investigated its role in the detoxification of acetaminophen [N-acetyl-p-aminophenol (APAP)]-induced hepatotoxicity. When Nrf2 knockout (Nrf2−/−) and wild-type mice were given APAP by i.p. injection, the Nrf2−/− mice were highly susceptible to APAP treatment. With doses of APAP that were tolerated by wild-type mice, the Nrf2−/− mice died of liver failure. When hepatic glutathione was depleted after a dose of 400 mg/kg of APAP, the wild-type mice were able to compensate and regain the normal glutathione level. In contrast, the glutathione level in the Nrf2−/− mice was not compensated and remained low. This was because of the decrease in the gene expression of gcsH and gcsL as well as gss in the livers of the Nrf2−/− mice. In addition, the expression of ugt1a6 and gstpi that detoxify APAP by conjugation was also decreased. This increased susceptibility of the Nrf2−/− mice to APAP, because of an impaired capacity to replenish their glutathione stores, compounded with a decreased detoxification capability, highlights the importance of Nrf2 in the regulation of glutathione synthesis and cellular detoxification processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de mestrado, Doenças Infecciosas Emergentes, Universidade de Lisboa, Faculdade de Medicina, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metacestode (larval) stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE), a very severe and in many cases incurable disease. To date, benzimidazoles such as albendazole and mebendazole are the only approved chemotherapeutical treatment options. Benzimidazoles inhibit metacestode proliferation, but do not act parasiticidal. Thus, benzimidazoles have to be taken a lifelong, can cause adverse side effects such as hepatotoxicity, and are ineffective in some patients. We here describe a newly developed screening cascade for the evaluation of the in vitro efficacy of new compounds that includes assessment of parasiticidal activity. The Malaria Box from Medicines for Malaria Venture (MMV), comprised of 400 commercially available chemicals that show in vitro activity against Plasmodium falciparum, was repurposed. Primary screening was carried out at 10 μM by employing the previously described PGI assay, and resulted in the identification of 24 compounds that caused physical damage in metacestodes. Seven out of these 24 drugs were also active at 1 μM. Dose-response assays revealed that only 2 compounds, namely MMV665807 and MMV665794, exhibited an EC50 value below 5 μM. Assessments using human foreskin fibroblasts and Reuber rat hepatoma cells showed that the salicylanilide MMV665807 was less toxic for these two mammalian cell lines than for metacestodes. The parasiticidal activity of MMV665807 was then confirmed using isolated germinal layer cell cultures as well as metacestode vesicles by employing viability assays, and its effect on metacestodes was morphologically evaluated by electron microscopy. However, both oral and intraperitoneal application of MMV665807 to mice experimentally infected with E. multilocularis metacestodes did not result in any reduction of the parasite load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND & AIMS The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. METHODS By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. RESULTS After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. CONCLUSIONS Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. LAY SUMMARY Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The industrial solvent N, N-dimethylformamide (DMF) causes liver damage in humans. The hepatotoxicity of N-alkylformamides seems to be linked to their metabolism to N-alkylcarbamic acid thioesters. To clarify the role of metabolism in DMF hepatotoxicity, the metabolic fate of DMF was investigated in rodents. DMF was rapidly metabolised and excreted in the urine as N-hydroxymethyl-N-methyl-formamide (HMMF), N-acetyl-S-(N-methylcarbamoyl) cysteine (AMCC) and a metabolite measured as formamide by GLC. At high doses (0.7 and 7.0mmo1/kg) a small proportion of the dose was excreted unchanged. AMCC, measured by GLC after derivatisation to ethyl N-methylcarbamate, was a minor metabolite. Only 5.2% of the dose (0.1mmo1/kg) in rats or 1.2% in mice was excreted as AMCC. The minor extent of this metabolic pathway in rodents might account for the marginal liver damage induced by DMF in these species. In a collaborative study, volunteers were shown to metabolise DMF to AMCC to a greater extent than rodents. Nearly 15% of the inhaled dose (0.049mmo1/kg) was excreted as AMCC. This result suggests that the metabolic pathway leading to AMCC is more important in humans than in rodents. Consequently the risk associated with exposure to DMF might be higher in humans than in rodents. The metabolism of formamides to S-(N-alkylcarbamoyl) glutathione, the metabolic precursor of the thioester mercapturates, was studied using mouse, rat and human hepatic microsomes. The metabolism of NMF (10mM) to S-(N-methylcarbanoyl)glutathione (SMG) required the presence of GSH, NADPH and air. Generation of S-(N-methyl-carbamoyl)glutathione (SMG) was inhibited when incubations were conducted in an atmosphere of CO:air (1:1) or when SKF 525-A (3.0mM) was included in the incubations. Pre-treatment of mice with phenobarbitone (PB, 80mg/kg for 4 days) or beta-naphthoflavone (BNF, 50mg/kg for 4 days) failed to increase the microsomal formation of SMG from NMF. This result suggests that the oxidation of NMF is catalysed by a cytochrome P-450 isozyme which is unaffected by PB or BNF. Microsomal incubations with DMF (5 or 10mM) failed to generate measurable amounts of SMG although DMF was metabolised to HMMF. Incubations of microsomes with HMMF resulted in the generation of a small amount of SMG which was affected by inhibitors of microsomal enzymes in the same way as in the case of NMF. HMMF was metabolised to AMCC by rodents in vivo. This result suggests that HMMF is a major intermediate in the metabolic activation of DMF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hepatotoxicity of the industrial solvent and investigational anti-tumour agent N-methylformamide (NMF, HOCNHCH3) and several structural analogues was assessed in mice. NMF and its ethyl analogue (NEF) were equipotent hepatotoxins causing extensive centrilobular necrosis and damage to the gall bladder. Pretreatment of mice with SKF525A did not influence the toxicity of these N-alkylformamides. Replacement of the formyl hydrogen of NMF with deuterium or methyl significantly reduced its hepatotoxicity. An in vitro model for the study of the toxicity and metabolism of N-alkylformamides was developed using isolated mouse hepatocytes. The cytotoxicity of NMF in vitro was concentration-dependent with maximal toxicity being achieved at concentrations of 5mM or above. The cytotoxic potential of related amides correlated well with their in vivo hepatotoxic potential. Pretreatment of mice with buthionine sulphoximine (BSO), which depleted hepatocytic levels of glutathione to 15% of control values, exacerbated the cytotoxicity of NMF towards the hepatocytes. NMF (1mM or above), incubated with isolated mouse hepatocytes, depleted intracellular glutathione levels to 26% of control values within 4h. Depletion of glutathione was quantitatively matched by the formation of a carbamoylating metabolite. Metabolism was dependent on the concentration of NMF and was drastically reduced in incubations of hepatocytes isolated from mice pretreated with BSO. The carbamoylating metabolite, S-(N-methylcarbamoyl)-glutathione (SMG), was identified in vitro using FAB-MS. The generation of SMG was subject to a large primary H/D kinetic isotope effect when the formyl hydrogen was replaced with deuterium. Likewise, glutathione depletion and metabolite formation were reduced or abolished by the deuteration or methylation of the formyl moiety of NMF. NEF, like NMF, depleted hepatocytic glutathione levels and was metabolised to a carbamoylating metabolite. Radioactivity derived from 14C-NMF and 14C-NEF, labelled in the alkyl moieties, was found to be irreversibly associated with microsomal protein on incubation in vitro. Binding was dependent on the presence of NADPH and was mostly abolished in the presence of reduced glutathione. SKF525A failed to influence the binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using ionspray tandem mass spectrometry the glutathione conjugate SMG was identified as a biliary metabolite of DMF in rats (0.003% of a dose of 5OOmg/kg DMF i.p.). Formation of this metabolite was increased five fold after induction of CYP2E1 by acetone, and was inhibited to 20% of control values following pretreatment with disulfrram. Generation of SMG from DMF in vivo was shown to exhibit a large kinetic deuterium isotope effect (KWKD=10.1 ± 1.3), which most likely represents the product of 2 discrete isotope effects on N-demethylation and formyl oxidation reactions.The industrial solvent N,N-dimethylformamide (DMF) and the investigational anti-tumour agent N-methylformamide (NMF) cause liver damage in rodents and humans. The hepatotoxicity of N-alkylformamides is linked to their metabolism to N-alkylcarbamic acid thioesters. The enzymatic details of this pathway were investigated. Hepatocytes isolated from BALB/c mice which had been pretreated with acetone, an inducer of the cytochrome P-450 isozyme CYP2E1, were incubated with NMF (10mM). NMF caused extensive toxicity (> 90% ) as determined by lactate dehydrogenase (LDH) release, compared to cells from untreated animals. Incubation of liver cells with NMF for 6 hrs caused 60±17% LDH release whilst in the presence of DMSO (10mM), an alternative substrate for CYP2E1, LDH release was reduced to 20±10% . The metabolism of NMF to S-(N-methylcarbamoyl)glutathione (SMG) was measured in incubates with liver microsomes from mice, rats or humans. Metabolism of NMF was elevated in microsomes isolated from rats and mice pretreated with acetone, by 339% and 183% respectively. Pretreatment of animals with 4-methylpyrazole induced the metabolism of NMF to 280% by rat microsomes, but was without effect on NMF metabolism by mouse microsomes. The CYP2E1 inhibitors or alternative substrates diethyl dithiocarbamate (DEDTC), p-nitrophenol (PNP) and dimethyl sulphoxide (DMSO) strongly inhibited the metabolism of NMF in suspensions of rat liver microsomes, at concentrations which did not effect aminopyrine N-demethylation. The rate of metabolism of NMF to SMG in human microsomes correlated (r> 0.8) with the rate of metabolism of chlorzoxazone, a CYP2E1 probe. A polyclonal antibody against rat CYP2E1 (10mg/nmol P-450) inhibited NMF metabolism in microsomes from rats and humans by 75% and 80% , respectively. The amount of immunoblottable enzyme in human microsomes, determined using an anti-rat CYP2E1 antibody, correlated with the rate of NMF metabolism (r> 0.8). Purified rat CYP2E1 catalysed the generation of SMG from NMF. Formation of the DMF metabolite N-hydroxymethyl-N-methylformamide (HMMF) in incubations with rat liver microsomes was elevated by 200% following pretreatment of animals with acetone. Co-incubation with DEDTC (100μM) inhibited HMMF generation from DMF by 88% . Co-incubation of DMF (10mM) with NMF (1mM) inhibited the formation of SMG by 95% . A polyclonal antibody against rat CYP2E1 (10mg/nmol P-450) inhibited generation of HMMF in incubates with rat and human liver microsomes by 68.4% and 67.5% , respectively. Purified rat CYP2E1 catalysed the generation of HMMF from DMF. Using ionspray tandem mass spectrometry the glutathione conjugate SMG was identified as a biliary metabolite of DMF in rats (0.003% of a dose of 5OOmg/kg DMF i.p.). Formation of this metabolite was increased five fold after induction of CYP2E1 by acetone, and was inhibited to 20% of control values following pretreatment with disulfrram. Generation of SMG from DMF in vivo was shown to exhibit a large kinetic deuterium isotope effect (KHKD=10.1 ± 1.3), which most likely represents the product of 2 discrete isotope effects on N-demethylation and formyl oxidation reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs), also termed "glitazones", are used as antidiabetic agents for the treatment of type 2 (non-insulin dependent) diabetes mellitus. They activate the nuclear peroxisome proliferator-activated receptor-gamma (PPAR-gamma). This increases the transcription of various insulin-sensitive genes, improving insulin action and lowering blood glucose concentrations. TZDs currently in clinical use for the treatment of type 2 diabetes are rosiglitazone and pioglitazone. Troglitazone was withdrawn due to hepatotoxicity. Other TZDs (e.g. ciglitazone) have been studied preclinically, but not introduced into clinical use. TZDs do not cause severe hypoglycemia, hence they are regarded as antihyperglycemic (rather than hypoglycemic) agents .... © 2007 Elsevier Inc. All rights reserved..

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Troglitazone was the first thiazolidinedione antihyperglycemic agent to be introduced for the treatment of type 2 diabetes mellitus. It was introduced in 1997, but withdrawn almost immediately (UK) or by 2000 (USA) as evidence emerged of fatal idiosyncratic hepatotoxicity... © 2007 Copyright © 2007 Elsevier Inc. All rights reserved.