970 resultados para Hepatic growth factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have shown that phox homology (PX) domains act as phosphoinositide-binding motifs. The majority of PX domains studied show binding to phosphatidylinositol 3-monophosphate (Ptdlns(3)P), an association that allows the host protein to localize to membranes of the endocytic pathway. One issue, however, is whether PX domains may have alternative phosphoinositide binding specificities that could target their host protein to distinct subcellular compartments or allow their allosteric regulation by phosphoinositides other than PtdIns(3)P. It has been reported that the PX domain of sorting nexin 1 (SNX1) specifically binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P-3) (Zhong, Q., Lazar, C. S., Tronchere, H., Sato, T., Meerloo, T., Yeo, M., Songyang, Z., Emr, S. D., and Gill, G. N. (2002) Proc. Natl. Acad. Sci. U. S. A. 99,6767-6772). In the present study, we have shown that whereas SNX1 binds PtdIns(3,4,5)P-3 in protein:lipid overlay assays, in liposomes-based assays, binding is observed to PtdIns(3)P and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P-2) but not to PtdIns(3,4,5)P-3. To address the significance of PtdIns(3,4,5)P-3 binding, we examined the subcellular localization of SNX1 under conditions in which plasma membrane PtdIns(3,4,5)P-3 levels were significantly elevated. Under these conditions, we failed to observe association of SNX1 with this membrane. However, consistent with the binding to PtdIns(3)P and PtdIns(3,5)P-2 being of more physiological significance was the observation that the association of SNX1 with an early endosomal compartment was dependent on a 3-phosphoinositide-binding PX domain and the presence of PtdIns(3)P on this compartment. Finally, we somal association of SNX1 is important for its ability to regulate the targeting of internalized epidermal growth factor receptor for lysosomal degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factor receptor (FGFR) signalling is important in the initiation and regulation of osteogenesis. Although mutations in FGFR1, 2 and 3 genes are known to cause skeletal deformities, the expression of FGFR4 in bony tissue remains unclear. We have investigated the expression pattern of FGFR4 in the neonatal mouse calvaria and compared it to the expression pattern in cultures of primary osteoblasts. Immunohistochemistry demonstrated that FGFR4 was highly expressed in rudimentary membranous bone and strictly localised to the cellular components (osteoblasts) between the periosteal and endosteal layers. Cells in close proximity to the newly formed osteoid (preosteoblasts) also expressed FGFR4 on both the endosteal and periosteal surfaces. Immunocytochemical analysis of primary osteoblast cultures taken from the same cranial region also revealed high levels of FGFR4 expression, suggesting a similar pattern of cellular expression in vivo and in vitro. RT-PCR and Western blotting for FGFR4 confirmed its presence in primary osteoblast cultures. These results suggest that FGFR4 may be an important regulator of osteogenesis with involvement in preosteoblast proliferation and differentiation as well as osteoblast functioning during intramembranous ossification. The consistent expression of FGFR4 in vivo and in vitro supports the use of primary osteoblast cultures for elucidating the role of FGFR4 during osteogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Keratinocyte Growth factor (KGF) is an epithelial cell growth factor of the fibroblast growth factor family and is produced by fibroblasts and microvascular endothelium in response to proinflammatory cytokines and steroid hormones. KGF is a heparin binding growth factor that exerts effects on epithelial cells in a paracrine fashion through interaction with KGF receptors. Preclinical data has demonstrated that KGF can prevent lung and gastrointestinal toxicity following chemotherapy and radiation and preliminary clinical data in the later setting supports these findings. In the experimental allogeneic bone marrow transplant scenario KGF has shown significant ability to prevent graft-versus-host disease by maintaining gastrointestinal tract integrity and acting as a cytokine shield to prevent subsequent proinflammatory cytokine generation. Within this setting KGF has also shown an ability to prevent experimental idiopathic pneumonia syndrome by stimulating production of surfactant protein A, promoting alveolar epithelialization and attenuating immune-mediated injury. Perhaps most unexpectantly, KGF appears able to maintain thymic function during allogeneic stern cell transplantation and so promote T cell engraftment and reconstitution. These data suggest that KGF will find a therapeutic role in the prevention of epithelial toxicity following intensive chemotherapy and radiotherapy protocols and in allogeneic stem cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factor receptors (FGFRs) undergo highly regulated spatial and temporal changes of expression during development. This study describes the use of quantitative reverse transcriptase-polymerase chain reaction and immunochemistry to assess the changes in expression of FGFR4 as compared to its FGFR4-17a and -17b isoforms in mouse tissues, from early embryogenesis through to adulthood. Compared to FGFR4, the expression of the isoforms is more restricted at all developmental stages tested. The reverse transcriptase-polymerase chain reaction demonstrated that FGFR4 is expressed in more tissue types than either of its isoforms: it was found predominantly in lung, liver, brain, skeletal muscle and kidney, whereas the FGFR4-17a form was detected in lung and skeletal muscle, and the FGFR4-17b form only in lung, liver, skeletal muscle and kidney. Immunohistochemistry confirmed strong FGFR4-17b expression in the postnatal lung. When combined, the results suggest that FGFR4 variants play important roles particularly in lung and skeletal muscle development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the toothless (tl/tl) osteopetrotic rat, teeth form but fail to erupt. Treatment of tl/tl rats with colony-stimulating factor-1 (CSF-1) activates bone resorption by osteoclasts, permits tooth eruption, and up-regulates the immunoreactivity of bone marrow mononuclear cells to growth hormone receptor (GHr) and insulin-like growth factor (IGF)-I. This study examined the distribution of tartrate-resistant acid phosphatase (TRAP) and immunoreactivity for GHr and IGF-I in osteoclast-like cells located on the alveolar bone margin, adjacent to the lower first molar crown, in 14-day-old normal and tl/tl rats, following treatment with CSF-1. Osteoclast-like cells demonstrated a positive reaction for TRAP, GHr, and IGF-I in all groups. However, in tl/tl tissue, osteoclast-like cells were generally negative for GHr. There was no significant difference in the total number of TRAP, GHr, and IGF-I-positive osteoclast-like cells on the adjacent bone margin in normal, normal treated with CSF-1, and tl/tl rats. CSF-1 treatment of the tl/tl rat significantly increased the total number of osteoclast-like cells, which were positive for TRAP (p < 0.001), GHr (p < 0.05) and IGF-I (P < 0.01).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show here that nerve growth factor (NGF), the canonical neurotrophic factor, is synthesized and released by breast cancer cells. High levels of NGF transcript and protein were detected in breast cancer cells by reverse transcription-PCR, Western blotting, ELISA assay and immunohistochemistry. Conversely, NGF production could not be detected in normal breast epithelial cells at either the transcriptional or protein level. Confocal analysis indicated the presence of NGF within classical secretion vesicles. Breast cancer cell-produced NGF was biologically active, as demonstrated by its ability to induce the neuronal differentiation of embryonic neural precursor cells. Importantly, the constitutive growth of breast cancer cells was strongly inhibited by either NGF-neutralizing antibodies or K-252a, a pharmacological inhibitor of NGF receptor TrkA, indicating the existence of an NGF autocrine loop. Together, our data demonstrate the physiological relevance of NGF in breast cancer and its potential interest as a marker and therapeutic target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BRN2 transcription factor (POU3F2, N-Oct-3) has been implicated in development of the melanocytic lineage and in melanoma. Using a low calcium medium supplemented with stem cell factor, fibroblast growth factor-2, endothelin-3 and cholera toxin, we have established and partially characterised human melanocyte precursor cells, which are unpigmented, contain immature melanosomes and lack L-dihydroxyphenylalanine reactivity. Melanoblast cultures expressed high levels of BRN2 compared to melanocytes, which decreased to a level similar to that of melanocytes when cultured in medium that contained phorbol ester but lacked endothelin-3, stem cell factor and fibroblast growth factor-2. This decrease in BRN2 accompanied a positive L-dihydroxyphenylalanine reaction and induction of melanosome maturation consistent with melanoblast differentiation seen during development. Culture of primary melanocytes in low calcium medium supplemented with stem cell factor, fibroblast growth factor-2 and endothelin-3 caused an increase in BRN2 protein levels with a concomitant change to a melanoblast-like morphology. Synergism between any two of these growth factors was required for BRN2 protein induction, whereas all three factors were required to alter melanocyte morphology and for maximal BRN2 protein expression. These finding implicate BRN2 as an early marker of melanoblasts that may contribute to the hierarchy of melanocytic gene control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Proteinuria (PT) with SRL appears not only after conversion from a calcineurin inhibitor (CI), but also in de novo patients. The PT may be related to a hemodynamic effect of CI withdrawal or to a direct effect of SRL in glomerulus (GL). Recently an association between PT in SRL patients and FSGS lesions has been described. It is also known that SRL decrease VEGF synthesis and experimental data suggest that VEGF is essential to podocyte survival and differentiation. Aim: To determine if glomerular lesions and PT in SRL patients could be related to altered glomerular VEGF expression. Material and methods: We evaluated glomerular VEGF expression in 10 biopsies: A-allograft kidney in backtable (n=3); B-native normal kidney (n=1); C-native kidney with FSGS lesions (n=2); D-allograft kidney with FSGS lesions from proteinuric patients under SRL after conversion from CI (n=3); E-allograft kidney in proteinuric patient under SRL with a membranous glomerulonephritis (n=1). We employed indirect immunohistochemistry in paraffin-embedded sections using a mouse monoclonal antibody against human VEGF-C1 (Santa Cruz). Results: The controls biopsies (A; B) showed normal global VEGF expression, with strong podocyte staining. The VEGF expression in the group C was similar to the controls, although no FSGS lesions were observed in the stained GL. The group D showed normal VEGF expression in the apparently normal GL, hypertrophied podocytes with reduction of VEGF in anomalous GL, and no staining in slcerotic lesions. We observed a gradual reduction of VEGF expression with progressive dedifferentiation of podocytes. In the group E the VEGF was globally reduced, with some hypertrophied podocytes expressing decreased VEGF. Conclusion: We confirmed the diminished VEGF expression in injured podocytes of SRL patients.This decreased expression may result from a direct effect of SRL and precede the appearance of FSGS lesions and PT. Further studies are needed with greater number of cases and controls, including early biopsies of patients under SRL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of the this study was to determine the effect of intravitreal antivascular endothelial growth factor injections on intraocular pressure (IOP) and identify possible risk factors for the development of increased IOP. MATERIALS AND METHODS: This prospective study included a total of 106 eyes receiving intravitreal injection of bevacizumab as treatment for macular edema or active choroidal neovascularization. IOP was measured by Goldmann applanation tonometry immediately before the intravitreal injection and 5 min, 1 h and 15 days after the procedure. The records of the study patients were reviewed for age, gender, history of glaucoma, diabetes mellitus, phakic status, systemic and topical medication and number of previous injections. Subconjunctival reflux was registered. IOP elevation was defined as IOP ≥21 mm Hg and/or a change from baseline of ≥5 mm Hg recorded at least on two or more measurements on the same visit. RESULTS: Mean preoperative IOP was 15.31 ± 3.90 mm Hg and postoperative IOP values were 27.27 ± 11.87 mm Hg (after 5 min), 17.59 ± 6.24 mm Hg (after 1 h) and 16.86 ± 3.62 mm Hg (after 15 days). The IOP variation was statistically significant between pre- and postoperative measurements (p < 0.05). Subconjunctival reflux was recorded in 11.3%, and in this subgroup the IOP at 5 min and at 1 h was lower than preoperative IOP (p < 0.05). CONCLUSIONS: More than one third of the eyes achieved IOPs >30 mm Hg 5 min after injection. Subconjunctival reflux contributed to a lower mean postoperative IOP (p < 0.05). Considerations for the management include prophylactic IOP lowering with medical therapy and/or preinjection ocular decompression for patients with a history of glaucoma or ocular hypertension and switching to an as-needed injection protocol in patients suffering a marked IOP rise in previous injections. © 2015 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor beta (TGF-beta) and platelet-derived growth factor A (PDGFAlpha) play a central role in tissue morphogenesis and repair, but their interplay remain poorly understood. The nuclear factor I C (NFI-C) transcription factor has been implicated in TGF-beta signaling, extracellular matrix deposition, and skin appendage pathologies, but a potential role in skin morphogenesis or healing had not been assessed. To evaluate this possibility, we performed a global gene expression analysis in NFI-C(-/-) and wild-type embryonic primary murine fibroblasts. This indicated that NFI-C acts mostly to repress gene expression in response to TGF-beta1. Misregulated genes were prominently overrepresented by regulators of connective tissue inflammation and repair. In vivo skin healing revealed a faster inflammatory stage and wound closure in NFI-C(-/-) mice. Expression of PDGFA and PDGF-receptor alpha were increased in wounds of NFI-C(-/-) mice, explaining the early recruitment of macrophages and fibroblasts. Differentiation of fibroblasts to contractile myofibroblasts was also elevated, providing a rationale for faster wound closure. Taken together with the role of TGF-beta in myofibroblast differentiation, our results imply a central role of NFI-C in the interplay of the two signaling pathways and in regulation of the progression of tissue regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Amplification and overexpression of the epidermal growth factor receptor (EGFR) gene are a hallmark of primary glioblastoma (45%), making it a prime target for therapy. In addition, these amplifications are frequently associated with oncogenic mutations in the extracellular domain. However, efforts at targeting the EGFR tyrosine kinase using small molecule inhibitors or antibodies have shown disappointing efficacy in clinical trials for newly diagnosed or recurrent glioblastoma. Here, we review recent insights into molecular mechanisms relevant for effective targeting of the EGFR pathway. RECENT FINDINGS: Molecular workup of glioblastoma tissue of patients under treatment with small molecule inhibitors has established drug concentrations in the tumor tissue, and has shed light on the effectiveness of target inhibition and respective effects on pathway signaling. Further, functional analyses of interaction of small molecule inhibitors with distinct properties to bind to the active or inactive form of EGFR have provided new insights that will impact the choice of drugs. Finally, vaccination approaches targeting the EGFRvIII mutant featuring a tumor-specific antigen have shown promising results that warrant larger controlled clinical trials. SUMMARY: A combination of preclinical and clinical studies at the molecular level has provided new insights that will allow refining strategies for targeting the EGFR pathway in glioblastoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in wound care are of great importance in clinical injury management. In this respect, the nuclear receptor peroxisome proliferator-activated receptor (PPAR)beta/delta occupies a unique position at the intersection of diverse inflammatory or anti-inflammatory signals that influence wound repair. This study shows how changes in PPARbeta/delta expression have a profound effect on wound healing. Using two different in vivo models based on topical application of recombinant transforming growth factor (TGF)-beta1 and ablation of the Smad3 gene, we show that prolonged expression and activity of PPARbeta/delta accelerate wound closure. The results reveal a dual role of TGF-beta1 as a chemoattractant of inflammatory cells and repressor of inflammation-induced PPARbeta/delta expression. Also, they provide insight into the so far reported paradoxical effects of the application of exogenous TGF-beta1 at wound sites.