933 resultados para Harvesting losses
Resumo:
Learning to rank from relevance judgment is an active research area. Itemwise score regression, pairwise preference satisfaction, and listwise structured learning are the major techniques in use. Listwise structured learning has been applied recently to optimize important non-decomposable ranking criteria like AUC (area under ROC curve) and MAP(mean average precision). We propose new, almost-lineartime algorithms to optimize for two other criteria widely used to evaluate search systems: MRR (mean reciprocal rank) and NDCG (normalized discounted cumulative gain)in the max-margin structured learning framework. We also demonstrate that, for different ranking criteria, one may need to use different feature maps. Search applications should not be optimized in favor of a single criterion, because they need to cater to a variety of queries. E.g., MRR is best for navigational queries, while NDCG is best for informational queries. A key contribution of this paper is to fold multiple ranking loss functions into a multi-criteria max-margin optimization.The result is a single, robust ranking model that is close to the best accuracy of learners trained on individual criteria. In fact, experiments over the popular LETOR and TREC data sets show that, contrary to conventional wisdom, a test criterion is often not best served by training with the same individual criterion.
Resumo:
Energy Harvesting (EH) nodes, which harvest energy from the environment in order to communicate over a wireless link, promise perpetual operation of a wireless network with battery-powered nodes. In this paper, we address the throughput optimization problem for a rate-adaptive EH node that chooses its rate from a set of discrete rates and adjusts its power depending on its channel gain and battery state. First, we show that the optimal throughput of an EH node is upper bounded by the throughput achievable by a node that is subject only to an average power constraint. We then propose a simple transmission scheme for an EH node that achieves an average throughput close to the upper bound. The scheme's parameters can be made to account for energy overheads such as battery non-idealities and the energy required for sensing and processing. The effect of these overheads on the average throughput is also analytically characterized.
Resumo:
We study a sensor node with an energy harvesting source. The generated energy can be stored in a buffer. The sensor node periodically senses a random field and generates a packet. These packets are stored in a queue and transmitted using the energy available at that time. We obtain energy management policies that are throughput optimal, i.e., the data queue stays stable for the largest possible data rate. Next we obtain energy management policies which minimize the mean delay in the queue. We also compare performance of several easily implementable sub-optimal energy management policies. A greedy policy is identified which, in low SNR regime, is throughput optimal and also minimizes mean delay.
Resumo:
In this paper, we propose power management algorithms for maximizing the utility of energy harvesting sensors (EHS) that operate purely on the basis of energy harvested from the environment. In particular, we consider communication (i.e., transmission and reception) power management issues for EHS under an energy neutrality constraint. We also consider the fixed power loss effects of the circuitry, the battery inefficiency and its storage capacity, in the design of the algorithms. We propose a two-stage structure that exploits the inherent difference in the timescales at which the energy harvesting and channel fading processes evolve, without loss of optimality of the resulting solution. The outer stage schedules the power that can be used by an inner stage algorithm, so as to maximize the long term average utility and at the same time maintain energy neutrality. The inner stage optimizes the communication parameters to achieve maximum utility in the short-term, subject to the power constraint imposed by the outer stage. We optimize the algorithms for different transmission schemes such as the truncated channel inversion and retransmission strategies. The performance of the algorithms is illustrated via simulations using solar irradiance data, and for the case of Rayleigh fading channels. The results demonstrate the significant performance benefits that can be obtained using the proposed power management algorithms compared to the energy efficient (optimum when there is no storage) and the uniform power consumption (optimum when the battery has infinite capacity and is perfectly efficient) approaches.
Resumo:
When people drink water having a fluoride (F-) concentration >1-1.5 mg/L for a long period of time, various ailments that are collectively referred to as fluorosis occur. Based on the design of Thomas (http://www.planetkerala.org), an inclined basin-type solar still containing sand and water has been used at Bangalore for defluoridation. For water samples having a fluoride concentration in the range 5-20 mg/L, the fluoride concentration in the distillate was usually <1.5 mg/L. During the periods October 2006 May 2007 and October 2007 May 2008, the volume of distillate showed a significant diurnal variation, ranging from 0.3 to 4.0 L/m(2).day. Based on the figures for 2006, the cost of the still was about Rs. 850 (US$16) for collector areas in the range 0.50-0.57 m(2). The occurrence of F- in the distillate merits further investigation. Overall, the still effectively removes F-, but a large area of the collector, in the range 2.5-25 m(2), is needed to produce about 10 L of distilled water for cooking and drinking. Rainwater falling on the upper surface of the still was collected, and its fluoride concentration was found to be below the desirable limit of 1 mg/L. Hence it can also be used for cooking and drinking.
Resumo:
Researchers can use bond graph modeling, a tool that takes into account the energy conservation principle, to accurately assess the dynamic behavior of wireless sensor networks on a continuous basis.
Resumo:
A moving magnet linear motor compressor or pressure wave generator (PWG) of 2 cc swept volume with dual opposed piston configuration has been developed to operate miniature pulse tube coolers. Prelimnary experiments yielded only a no-load cold end temperature of 180 K. Auxiliary tests and the interpretation of detailed modeling of a PWG suggest that much of the PV power has been lost in the form of blow-by at piston seals due to large and non-optimum clearance seal gap between piston and cylinder. The results of experimental parameters simulated using Sage provide the optimum seal gap value for maximizing the delivered PV power.
Resumo:
Network life time maximization is becoming an important design goal in wireless sensor networks. Energy harvesting has recently become a preferred choice for achieving this goal as it provides near perpetual operation. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over a fading AWGN channel with perfect/no channel state information provided at the transmitter. We obtain an achievable rate when there are inefficiencies in energy storage and the capacity when energy is spent in activities other than transmission.
Resumo:
In this paper, we determine packet scheduling policies for efficient power management in Energy Harvesting Sensors (EHS) which have to transmit packets of high and low priorities over a fading channel. We assume that incoming packets are stored in a buffer and the quality of service for a particular type of message is determined by the expected waiting time of packets of that type of message. The sensors are constrained to work with the energy that they garner from the environment. We derive transmit policies which minimize the sum of expected waiting times of the two types of messages, weighted by penalties. First, we show that for schemes with a constant rate of transmission, under a decoupling approximation, a form of truncated channel inversion is optimal. Using this result, we derive optimal solutions that minimize the weighted sum of the waiting times in the different queues.
Resumo:
In this paper, we study duty cycling and power management in a network of energy harvesting sensor (EHS) nodes. We consider a one-hop network, where K EHS nodes send data to a destination over a wireless fading channel. The goal is to find the optimum duty cycling and power scheduling across the nodes that maximizes the average sum data rate, subject to energy neutrality at each node. We adopt a two-stage approach to simplify the problem. In the inner stage, we solve the problem of optimal duty cycling of the nodes, subject to the short-term power constraint set by the outer stage. The outer stage sets the short-term power constraints on the inner stage to maximize the long-term expected sum data rate, subject to long-term energy neutrality at each node. Albeit suboptimal, our solutions turn out to have a surprisingly simple form: the duty cycle allotted to each node by the inner stage is simply the fractional allotted power of that node relative to the total allotted power. The sum power allotted is a clipped version of the sum harvested power across all the nodes. The average sum throughput thus ultimately depends only on the sum harvested power and its statistics. We illustrate the performance improvement offered by the proposed solution compared to other naive schemes via Monte-Carlo simulations.
Resumo:
Energy harvesting sensor networks provide near perpetual operation and reduce carbon emissions thereby supporting `green communication'. We study such a sensor node powered with an energy harvesting source. We obtain energy management policies that are throughput optimal. We also obtain delay-optimal policies. Next we obtain the Shannon capacity of such a system. Further we combine the information theoretic and queuing theoretic approaches to obtain the Shannon capacity of an energy harvesting sensor node with a data queue. Then we generalize these results to models with fading and energy consumption in activities other than transmission.
Resumo:
Sensor nodes with energy harvesting sources are gaining popularity due to their ability to improve the network life time and are becoming a preferred choice supporting `green communication'. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over an AWGN channel and show that the capacity achieving energy management policies are related to the throughput optimal policies. We also obtain the capacity when energy conserving sleep-wake modes are supported and an achievable rate for the system with inefficiencies in energy storage.
Resumo:
We investigate the thermoelectric (TE) figure-of-merit of a single-layer graphene (SLG) sheet by a physics-based analytical technique. We first develop analytical models of electrical and thermal resistances and the Seebeck coefficient of SLG by considering electron interactions with the in-plane and flexural phonons. Using those models, we show that both the figure-of-merit and the TE efficiency can be substantially increased with the addition of isotope doping as it significantly reduces the phonon-dominated thermal conductivity. In addition, we report that the TE open circuit output voltage and output power depends weakly on the SLG sheet dimensions and sheet concentration in the strongly diffusive regime. Proposed models agree well with the available experimental data and demonstrate the immense potential of graphene for waste-heat recovery application.
Resumo:
We propose energy harvesting technologies and cooperative relaying techniques to power the devices and improve reliability. We propose schemes to (a) maximize the packet reception ratio (PRR) by cooperation and (b) minimize the average packet delay (APD) by cooperation amongst nodes. Our key result and insight from the testbed implementation is about total data transmitted by each relay. A greedy policy that relays more data under a good harvesting condition turns out to be a sub optimal policy. This is because, energy replenishment is a slow process. The optimal scheme offers a low APD and also improves PRR.