899 resultados para HYPOTHALAMUS-PITUITARY-TESTICULAR AXIS
Resumo:
Fibromyalgia (FM) is a non-inflammatory rheumatic syndrome characterized by widespread musculoskeletal pain with palpable tender points, muscle stiffness, fatigue, and sleep disturbances. Patients with FM have hormonal changes that are directly correlated with symptoms of the syndrome. The neuroendocrine regulation may be impaired, with abnormalities in the hypothalamus-pituitary-adrenal (HPA) axis with various hormones showing changes in their levels. In women in fertile period, various gonadal hormones are associated with symptoms of the syndrome, but studies focusing only a population of women in post-menopausal period who do not use hormone replacement are rare. We developed an analytical cross sectional study to assess the plasma levels of cortisol and dehidroepiandrosterona sulfate (DHEA-S) with quimioluminescence method in a group of 17 women with FM and 19 healthy women in post-menopause who do not use hormone replacement and observe the correlation with the symptoms of pain through algometry, depression and physical functional capacity measured from the Beck Depression Index (BDI) and the Fibromyalgia Impact Questionnaire (FIQ). Three blood samples were collected in the morning (between 8:00 9:30) with an interval of 24 hours for the measurements of hormonal levels and biochemical profile. There were no immunological or lipid changes in patients with FM. Comparing the two groups, there is no difference in levels of cortisol and a tangential effect for DHEA-S (p=0,094) with the lowest levels in the FM. DHEA-S also correlated with pain threshold (r=0,7) and tolerance (r=0,65) in group FM. We found the presence of depressive state and low physical functional capacity in FM. It was also evident that women in post-menopausal period, DHEA-S should influence the symptoms of increased sensitivity to pain, but not the presence of depressive status and low physical functional
Resumo:
The objective of the present study was to analyze the prospective alterations of the testis and epididymis in a defined strain of alcoholic rats in order to contribute to our understanding of the effects of chronic alcoholism on reproduction. The testis and epididymis of the animals were submitted to morphological analysis by macroscopy, light microscopy and electron microscopy and to morphometric analysis. The UCh rats showed atrophy of the epithelium and reduction of testis and epididymis weight, liver hypertrophy and fat infiltration and alterations of the hypothalamus-pituitary axis. Ethanol induces changes in the weight and in the epithelium of the testis and epididymis and in the hypothalamus-pituitary axis of the UCh rats.
Resumo:
Chronic alcoholism alters reproduction and therefore may be responsible for alterations of prostate and seminal vesicles, which are the subject of this analysis in UCh ethanol-drinking rats. The prostate and seminal vesicles of 20 animals were submitted to macroscopic, light microscopy, electron microscopy and morphometric analysis. The UCh rats showed atrophy of the epithelium and reduction of the weight of the prostate and seminal vesicle, liver hypertrophy and fat infiltration and alterations of the hypothalamus-pituitary axis. Ethanol induces changes in the weight and in the epithelium of prostate and seminal vesicles and hypothalamus-pituitary axis of UCh rats.
Resumo:
Chronic alcoholism alters reproduction and therefore may be responsible for alterations of vas deferens, which are the subject of this analysis in UCh ethanol-drinking rats. The proximal and distal segments of the vas deferens of 20 animals were submitted to macroscopic, light microscopy, electron microscopy and morphometric analysis. The UCh rats showed atrophy of the epithelium of the vas deferens and alterations of the hypothalamus-pituitary axis. Ethanol induces changes in the epithelium of the vas deferens and hypothalamus-pituitary axis of UCh rats.
Resumo:
Exposure to agrichemicals can have deleterious effects on fish, such as disruption of the hypothalamus-pituitary-inter-renal axis (HPI) that could impair the ability of fish to respond to stressors. In this study, fingerlings of the teleost jundiá (Rhamdia quelen) were used to investigate the effects of the commonly used agrichemicals on the fish response to stress. Five common agrichemicals were tested: the fungicide - tebuconazole, the insecticide - methyl-parathion, and the herbicides - atrazine, atrazine + simazine, and glyphosate. Control fishes were not exposed to agrichemicals and standard stressors. In treatments 2-4, the fishes were exposed to sub-lethal concentrations (16.6%, 33.3%, and 50% of the LC50) of each agrichemical for 96 h, and at the end of this period, were subjected to an acute stress-handling stimulus by chasing them with a pen net. In treatments 5-7 (16.6%, 33.3%, and 50% of the LC50), the fishes were exposed to the same concentrations of the agrichemicals without stress stimulus. Treatment 8 consisted of jundiás not exposed to agrichemicals, but was subjected to an acute stress-handling stimulus. Jundiás exposed to methyl-parathion, atrazine + simazine, and glyphosate presented a decreased capacity in exhibiting an adequate response to cope with stress and in maintaining the homeostasis, with cortisol level lower than that in the control fish (P < 0.01). In conclusion, the results of this study clearly demonstrate that the acute exposure to sub-lethal concentrations of methyl-parathion, atrazine + simazine, and glyphosate exert a deleterious effect on the cortisol response to an additional acute stressor in the jundiá fingerlings. © 2008 Elsevier Inc. All rights reserved.
Resumo:
Craniopharyngiomas and germ cell tumors (GCT) may affect the pituitary-hypothalamic region during childhood. Although different in origin, their clinical and radiological features may be similar. In this article we present a 5-year-old girl with clinical and radiological findings (computer tomography calcification) that were initially considered as craniopharyngioma. However clinical outcome, blood and cerebral spinal fluid tumoral markers, and results from anatomopathology and immunohistochemistry disclosed a mixed GCT. This case report highlights that some clinical features and radiological findings of pituitary-hypothalamic tumors may be misdiagnosed as craniopharyngioma mainly when there is a mature teratoma with cartilaginous tissue differentiation. Copyright© ABE&M.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is well known that endocannabinoids play an important role in the regulation of food intake and body weight. Endocannabinoids and cannabinoid receptors are found in the hypothalamus and brainstem, which are central areas involved in the control of food intake and energy expenditure. Activation of these areas is related to hypophagia observed during inflammatory stimulus. This study investigated the effects of cannabinoid (CB1) receptor blockade on lipopolysaccharide (LPS)-induced hypophagia. Male Wistar rats were pretreated with rimonabant (10 mg/kg, by gavage) or vehicle; 30 min later they received an injection of either LPS (100 mu g/kg, intraperitoneal) or saline. Food intake, body weight, corticosterone response, CRF and CART mRNA expression, Fos-CRF and Fos-alpha-MSH immunoreactivity in the hypothalamus and Fos-tyrosine hydroxylase (TH) immunoreactivity in the brainstem were evaluated. LPS administration decreased food intake and body weight gain and increased plasma corticosterone levels and CRF mRNA expression in the PVN. We also observed an increase in Fos-CRF and Fos-TH double-labeled neurons after LPS injection in vehicle-pretreated rats, with no changes in CART mRNA or Fos-alpha-MSH immunoreactive neurons in the ARC. In saline-treated animals, rimonabant pretreatment decreased food intake and body weight gain but did not modify hormone response or Fos expression in the hypothalamus and brainstem compared with vehicle-pretreated rats. Rimonabant pretreatment potentiated LPS-induced hypophagia, body weight loss and Fos-CRF and Fos-TH expressing neurons. Rimonabant did not modify corticosterone, CRF mRNA or Fos-alpha-MSH responses in rats treated with LPS. These data suggest that the endocannabinoid system, mediated by CB1 receptors, modulates hypothalamic and brainstem circuitry underlying the hypophagic effect during endotoxemia to prevent an exaggerated food intake decrease. This article is part of a Special Issue entitled 'Central Control of Food Intake'. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.
Resumo:
Apomorphine is a dopamine receptor agonist that was recently licensed for the treatment of erectile dysfunction. However, although sexual activity can be stressful, there has been little investigation into whether treatments for erectile dysfunction affect stress responses. We have examined whether a single dose of apomorphine, sufficient to produce penile erections (50 mug/kg, i.a.), can alter basal or stress-induced plasma ACTH levels, or activity of central pathways thought to control the hypothalamic-pituitary-adrenal axis in rats. An immune challenge (interleukin-1beta, 1 mug/kg, i.a.) was used as a physical stressor while sound stress (100 dB white noise, 30 min) was used as a psychological stressor. Intravascular administration of apomorphine had no effect on basal ACTH levels but did substantially increase the number of Fos-positive amygdala and nucleus tractus solitarius catecholamine cells. Administration of apomorphine prior to immune challenge augmented the normal ACTH response to this stressor at 90 min and there was a corresponding increase in the number of Fos-positive paraventricular nucleus corticotropin-releasing factor cells, paraventricular nucleus oxytocin cells and nucleus tractus solitarius catecholamine cells. However, apomorphine treatment did not alter ACTH or Fos responses to sound stress. These data suggest that erection-inducing levels of apomorphine interfere with hypothalamic-pituitary-adrenal axis inhibitory feedback mechanisms in response to a physical stressor, but have no effect on the response to a psychological stressor. Consequently, it is likely that apomorphine acts on a hypothalamic-pituitary-adrenal axis control pathway that is unique to physical stressors. A candidate for this site of action is the nucleus tractus solitarius catecholamine cell population and, in particular, A2 noradrenergic neurons. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic-pituitary-adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic-pituitary-adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1beta. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1beta, we next mapped the effects of similar lesions on interleukin-1beta-induced Fos expression in regions previously shown to regulate the hypothalamic-pituitary-adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1beta, an outcome that is difficult to reconcile with a simple medial prefrontal cortex-bed nucleus of the stria terminalis-corticotropin-releasing factor cell control circuit.
Resumo:
The medial prefrontal cortex (mPFC) has been strongly implicated in control of the paraventricular nucleus of the hypothalamus (PVN) response to stress. Because of the paucity of direct projections from the mPFC to the PVN, we sought to investigate possible brain regions that might act as a relay between the two during psychological stress. Bilateral ibotenic acid lesions of the rat mPFC enhanced the number of Fos-immunoreactive cells seen in the PVN after exposure to the psychological stressor, air puff. Altered neuronal recruitment was seen in only one of the candidate relay populations examined, the ventral bed nucleus of the stria terminalis (vBNST). Furthermore, bilateral ibotenic acid lesions of the BNST caused a significant attenuation of the PVN response to air puff. To better characterize the structural relationships between the mPFC and PVN, retrograde tracing studies were conducted examining Fos expression in cells retrogradely labeled with cholera toxin b subunit (CTb) from the PVN and the BNST. Results obtained were consistent with an important role for both the mPFC and BNST in the mpPVN CRF cell response to air puff. We suggest a set of connections whereby a direct PVN projection from the ipsilateral vBNST is involved in the mpPVN response to air puff and this may, in turn, be modulated by an indirect projection from the mPFC to the BNST. (C) 2004 Wiley-Liss, Inc.
Resumo:
Os autores discutem, a partir do conceito evolutivo, como a resposta de estresse, nas suas possibilidades de fuga e luta e de imobilidade tônica, pode levar a uma nova compreensão etiológica do transtorno de estresse pós-traumático. Através da análise dos agrupamentos de sintomas desse diagnóstico - revivência, evitação e hiperexcitação -, procuram correlacionar os achados neurobiológicos e evolutivos. As descobertas atuais sobre a genética do transtorno de estresse pós-traumático são resumidas e colocadas nessa perspectiva evolutiva, dentro de conceitos que possibilitam o entendimento da interação gene/ambiente, como a epigenética. Propõem que a pesquisa dos fatores de risco do transtorno de estresse pós-traumático deva ser investigada do ponto de vista fatorial, onde a somatória destes aumenta o risco de desenvolvimento do quadro, não sendo possível a procura da causa do transtorno de forma única. A pesquisa de genes candidatos no transtorno de estresse pós-traumático deve levar em consideração todos os sistemas associados aos processos de respostas ao estresse, sistemas dos eixos hipotálamo-hipofisário-adrenal e simpático, mecanismos de aprendizado, formação de memórias declarativas, de extinção e esquecimento, da neurogênese e da apoptose, que envolvem vários sistemas de neurotransmissores, neuropeptídeos e neuro-hormônios.
Resumo:
CONTEXTO: A hipótese monoaminérgica da depressão não responde a uma série de questões, tais como "quais as causas dos distúrbios monoaminérgicos?" e "como explicar uma taxa de 30% de refratariedade aos antidepressivos?". Sendo assim, outras teorias têm sido propostas, entre elas, aquelas que enfocam as participações dos sistemas imune e endócrino. OBJETIVOS: Analisar criticamente o papel do sistema de resposta imunoinflamatória na depressão e discutir a interação dos antidepressivos com esse sistema, tanto do ponto de vista básico como clínico. MÉTODOS: Realizou-se pesquisa bibliográfica utilizando-se as bases de dados MedLine e SciELO. RESULTADOS: Pacientes vítimas de estresse crônico e depressão apresentam ativação das respostas imunoinflamatórias e do eixo hipotálamo-hipófise-adrenal, os quais, direta ou indiretamente, influenciam a neurotransmissão. Nesse sentido, a utilização de antidepressivos não apenas aumenta a disponibilidade de neurotransmissores na fenda sináptica, mas também induz mudança do padrão de resposta imune Th1 - pró-inflamatório - para o Th2, que é antiinflamatório. Além disso, sabe-se que pacientes não responsivos aos antidepressivos possuem o sistema imuneinflamatório mais ativo. No entanto, há uma série de dados controversos na literatura, havendo indícios de um perfil imune diferente de acordo com o tipo de depressão. CONCLUSÕES: A compreensão de aspectos neuroimunes presentes na depressão poderia contribuir para um melhor entendimento das bases biológicas desse transtorno e, possivelmente, para novas perspectivas na busca de uma terapêutica mais efetiva.
Resumo:
The industry has made available in the market a series of substances (nutraceuticals) which intent would be to optimize the use of nutrients in some metabolic paths, influencing positively reproductive performance in animals. However, the response to the use of nutraceuticals varies according to the animal. As the organism is highly complex and in order to achieve a perfect activity of the hypothalamic-pituitary-gonadal axis, an ideal interaction in molecular basis is needed, where the nutraceuticals can have their direct action. The aim of this study was to review the function and research results using the main nutraceuticals (β carotene, vitamin A, L-carnitine, omegas 3, 6 and 9 and Gamma-oryzanol) on reproductive characteristics of bulls and stallions.