792 resultados para HOPF BIFURCATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’ischémie aigüe (restriction de la perfusion suite à l’infarctus du myocarde) induit des changements majeurs des propriétés électrophysiologique du tissu ventriculaire. Dans la zone ischémique, on observe une augmentation du potassium extracellulaire qui provoque l’élévation du potentiel membranaire et induit un "courant de lésion" circulant entre la zone affectée et saine. Le manque d’oxygène modifie le métabolisme des cellules et diminue la production d’ATP, ce qui entraîne l’ouverture de canaux potassique ATP-dépendant. La tachycardie, la fibrillation ventriculaire et la mort subite sont des conséquences possibles de l’ischémie. Cependant les mécanismes responsables de ces complications ne sont pas clairement établis. La création de foyer ectopique (automaticité), constitue une hypothèse intéressante expliquant la création de ses arythmies. Nous étudions l’effet de l’ischémie sur l’automaticité à l’aide d’un modèle mathématique de la cellule ventriculaire humaine (Ten Tusscher, 2006) et d’une analyse exhaustive des bifurcations en fonction de trois paramètres : la concentration de potassium extracellulaire, le "courant de lésion" et l’ouverture de canaux potassiques ATP-dépendant. Dans ce modèle, nous trouvons que seule la présence du courant de lésion peut entrainer une activité automatique. Les changements de potassium extracellulaire et du courant potassique ATP-dépendant altèrent toutefois la structure de bifurcation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce mémoire consiste en l’étude du comportement dynamique de deux oscillateurs FitzHugh-Nagumo identiques couplés. Les paramètres considérés sont l’intensité du courant injecté et la force du couplage. Juqu’à cinq solutions stationnaires, dont on analyse la stabilité asymptotique, peuvent co-exister selon les valeurs de ces paramètres. Une analyse de bifurcation, effectuée grâce à des méthodes tant analytiques que numériques, a permis de détecter différents types de bifurcations (point de selle, Hopf, doublement de période, hétéroclinique) émergeant surtout de la variation du paramètre de couplage. Une attention particulière est portée aux conséquences de la symétrie présente dans le système.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a study of discrete nonlinear systems represented by one dimensional mappings.As one dimensional interative maps represent Poincarre sections of higher dimensional flows,they offer a convenient means to understand the dynamical evolution of many physical systems.It highlighting the basic ideas of deterministic chaos.Qualitative and quantitative measures for the detection and characterization of chaos in nonlinear systems are discussed.Some simple mathematical models exhibiting chaos are presented.The bifurcation scenario and the possible routes to chaos are explained.It present the results of the numerical computational of the Lyapunov exponents (λ) of one dimensional maps.This thesis focuses on the results obtained by our investigations on combinations maps,scaling behaviour of the Lyapunov characteristic exponents of one dimensional maps and the nature of bifurcations in a discontinous logistic map.It gives a review of the major routes to chaos in dissipative systems,namely, Period-doubling ,Intermittency and Crises.This study gives a theoretical understanding of the route to chaos in discontinous systems.A detailed analysis of the dynamics of a discontinous logistic map is carried out, both analytically and numerically ,to understand the route it follows to chaos.The present analysis deals only with the case of the discontinuity parameter applied to the right half of the interval of mapping.A detailed analysis for the n –furcations of various periodicities can be made and a more general theory for the map with discontinuities applied at different positions can be on a similar footing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the bifurcation structure of the logistic map with a time dependant control parameter. By introducing a specific nonlinear variation for the parameter, we show that the bifurcation structure is modified qualitatively as well as quantitatively from the first bifurcation onwards. We have also computed the two Lyapunov exponents of the system and find that the modulated logistic map is less chaotic compared to the logistic map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exchange-biased Ni/FeF2 films have been investigated using vector coil vibrating-sample magnetometry as a function of the cooling field strength HFC . In films with epitaxial FeF2 , a loop bifurcation develops with increasing HFC as it divides into two sub-loops shifted oppositely from zero field by the same amount. The positively biased sub-loop grows in size with HFC until only a single positively shifted loop is found. Throughout this process, the negative and positive (sub)loop shifts maintain the same discrete value. This is in sharp contrast to films with twinned FeF2 where the exchange field gradually changes with increasing HFC . The transverse magnetization shows clear correlations with the longitudinal subloops. Interestingly, over 85% of the Ni reverses its magnetization by rotation, either in one step or through two successive rotations. These results are due to the single-crystal nature of the antiferromagnetic FeF2 , which breaks down into two opposite regions of large domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies periodic traveling gravity waves at the free surface of water in a flow of constant vorticity over a flat bed. Using conformal mappings the free-boundary problem is transformed into a quasilinear pseudodifferential equation for a periodic function of one variable. The new formulation leads to a regularity result and, by use of bifurcation theory, to the existence of waves of small amplitude even in the presence of stagnation points in the flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a Lévy process ξ=(ξt)t≥0 drifting to −∞, we define the so-called exponential functional as follows: Formula Under mild conditions on ξ, we show that the following factorization of exponential functionals: Formula holds, where × stands for the product of independent random variables, H− is the descending ladder height process of ξ and Y is a spectrally positive Lévy process with a negative mean constructed from its ascending ladder height process. As a by-product, we generate an integral or power series representation for the law of Iξ for a large class of Lévy processes with two-sided jumps and also derive some new distributional properties. The proof of our main result relies on a fine Markovian study of a class of generalized Ornstein–Uhlenbeck processes, which is itself of independent interest. We use and refine an alternative approach of studying the stationary measure of a Markov process which avoids some technicalities and difficulties that appear in the classical method of employing the generator of the dual Markov process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article offers a fresh examination of the distinction drawn in international humanitarian law (IHL) between international and non-international armed conflicts. In particular, it considers this issue from the under-explored perspective of the influence of international human rights law (IHRL). It is demonstrated how, over time, the effect of IHRL on this distinction in IHL has changed dramatically. Whereas traditionally IHRL encouraged the partial elimination of the distinction between types of armed conflict, more recently it has been invoked in debates in a manner that would preserve what remains of the distinction. By exploring this important issue, it is hoped that the present article will contribute to the ongoing debates regarding the future development of the law of non-international armed conflict.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a transaction cost economics theory of the family firm, building upon the concepts of family-based asset specificity, bounded rationality, and bounded reliability. We argue that the prosperity and survival of family firms depend on the absence of a dysfunctional bifurcation bias. The bifurcation bias is an expression of bounded reliability, reflected in the de facto asymmetric treatment of family vs. nonfamily assets (especially human assets). We propose that absence of bifurcation bias is critical to fostering reliability in family business functioning. Our study ends the unproductive divide between the agency and stewardship perspectives of the family firm, which offer conflicting accounts of this firm type's functioning. We show that the predictions of the agency and stewardship perspectives can be usefully reconciled when focusing on how family firms address the bifurcation bias or fail to do so.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition to turbulence (spatio-temporal chaos) in a wide class of spatially extended dynamical system is due to the loss of transversal stability of a chaotic attractor lying on a homogeneous manifold (in the Fourier phase space of the system) causing spatial mode excitation Since the latter manifests as intermittent spikes this has been called a bubbling transition We present numerical evidences that this transition occurs due to the so called blowout bifurcation whereby the attractor as a whole loses transversal stability and becomes a chaotic saddle We used a nonlinear three-wave interacting model with spatial diffusion as an example of this transition (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show a scenario of a two-frequeney torus breakdown, in which a global bifurcation occurs due to the collision of a quasi-periodic torus T(2) with saddle points, creating a heteroclinic saddle connection. We analyze the geometry of this torus-saddle collision by showing the local dynamics and the invariant manifolds (global dynamics) of the saddle points. Moreover, we present detailed evidences of a heteroclinic saddle-focus orbit responsible for the type-if intermittency induced by this global bifurcation. We also characterize this transition to chaos by measuring the Lyapunov exponents and the scaling laws. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the local codimension one and two bifurcations which occur in a family of three-dimensional vector fields depending on three parameters. An equivalent family, depending on five parameters, was recently proposed as a new chaotic system with a Lorenz-like butterfly shaped attractor and was studied mainly from a numerical point of view, for particular values of the parameters, for which computational evidences of the chaotic attractor was shown. In order to contribute to the understand of this new system we present an analytical study and the bifurcation diagrams of an equivalent three parameter system, showing the qualitative changes in the dynamics of its solutions, for different values of the parameters. (C) 2007 Elsevier Ltd. All rights reserved.