995 resultados para H-INFINITY CONTROL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove a new Morse-Sard-type theorem for the asymptotic critical values of semi-algebraic mappings and a new fibration theorem at infinity for C-2 mappings. We show the equivalence of three different types of regularity conditions which have been used in the literature in order to control the asymptotic behaviour of mappings. The central role of our picture is played by the p-regularity and its bridge toward the rho-regularity which implies topological triviality at infinity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthetic control (SC) method has been recently proposed as an alternative to estimate treatment effects in comparative case studies. The SC relies on the assumption that there is a weighted average of the control units that reconstruct the potential outcome of the treated unit in the absence of treatment. If these weights were known, then one could estimate the counterfactual for the treated unit using this weighted average. With these weights, the SC would provide an unbiased estimator for the treatment effect even if selection into treatment is correlated with the unobserved heterogeneity. In this paper, we revisit the SC method in a linear factor model where the SC weights are considered nuisance parameters that are estimated to construct the SC estimator. We show that, when the number of control units is fixed, the estimated SC weights will generally not converge to the weights that reconstruct the factor loadings of the treated unit, even when the number of pre-intervention periods goes to infinity. As a consequence, the SC estimator will be asymptotically biased if treatment assignment is correlated with the unobserved heterogeneity. The asymptotic bias only vanishes when the variance of the idiosyncratic error goes to zero. We suggest a slight modification in the SC method that guarantees that the SC estimator is asymptotically unbiased and has a lower asymptotic variance than the difference-in-differences (DID) estimator when the DID identification assumption is satisfied. If the DID assumption is not satisfied, then both estimators would be asymptotically biased, and it would not be possible to rank them in terms of their asymptotic bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.