940 resultados para Graph analytics
Resumo:
An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system. This is a system in which higher-order regions are continuously attempting to predict the activity of lower-order regions at a variety of (increasingly abstract) spatial and temporal scales. The brain is thus revealed as a hierarchical prediction machine that is constantly engaged in the effort to predict the flow of information originating from the sensory surfaces. Such a view seems to afford a great deal of explanatory leverage when it comes to a broad swathe of seemingly disparate psychological phenomena (e.g., learning, memory, perception, action, emotion, planning, reason, imagination, and conscious experience). In the most positive case, the predictive processing story seems to provide our first glimpse at what a unified (computationally-tractable and neurobiological plausible) account of human psychology might look like. This obviously marks out one reason why such models should be the focus of current empirical and theoretical attention. Another reason, however, is rooted in the potential of such models to advance the current state-of-the-art in machine intelligence and machine learning. Interestingly, the vision of the brain as a hierarchical prediction machine is one that establishes contact with work that goes under the heading of 'deep learning'. Deep learning systems thus often attempt to make use of predictive processing schemes and (increasingly abstract) generative models as a means of supporting the analysis of large data sets. But are such computational systems sufficient (by themselves) to provide a route to general human-level analytic capabilities? I will argue that they are not and that closer attention to a broader range of forces and factors (many of which are not confined to the neural realm) may be required to understand what it is that gives human cognition its distinctive (and largely unique) flavour. The vision that emerges is one of 'homomimetic deep learning systems', systems that situate a hierarchically-organized predictive processing core within a larger nexus of developmental, behavioural, symbolic, technological and social influences. Relative to that vision, I suggest that we should see the Web as a form of 'cognitive ecology', one that is as much involved with the transformation of machine intelligence as it is with the progressive reshaping of our own cognitive capabilities.
Resumo:
Resumen tomado de la publicación
Resumo:
Se compone de diez actividades destinadas a ayudar a los profesores a desarrollar las capacidades de análisis e interpretación de datos de los alumnos de ciencias. Cada actividad incluye una hoja de preguntas y una hoja de datos, ésta última, disponible en archivos de Excel, para que los estudiantes utilicen las nuevas tecnologías para crear gráficos. Los ejercicios están pensados para el nivel superior de la etapa 2 (key stage 2) del currículo nacional inglés y para la etapa 3, es decir, para primaria y secundaria, y se centran en el contenido de 'Sc2 Life and Living Proceses'.
Resumo:
This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits
Resumo:
The Web's link structure (termed the Web Graph) is a richly connected set of Web pages. Current applications use this graph for indexing and information retrieval purposes. In contrast the relationship between Web Graph and application is reversed by letting the structure of the Web Graph influence the behaviour of an application. Presents a novel Web crawling agent, AlienBot, the output of which is orthogonally coupled to the enemy generation strategy of a computer game. The Web Graph guides AlienBot, causing it to generate a stochastic process. Shows the effectiveness of such unorthodox coupling to both the playability of the game and the heuristics of the Web crawler. In addition, presents the results of the sample of Web pages collected by the crawling process. In particular, shows: how AlienBot was able to identify the power law inherent in the link structure of the Web; that 61.74 per cent of Web pages use some form of scripting technology; that the size of the Web can be estimated at just over 5.2 billion pages; and that less than 7 per cent of Web pages fully comply with some variant of (X)HTML.
Resumo:
In order to make a full evaluation of an interconnection network, it is essential to estimate the minimum size of a largest connected component of this network provided the faulty vertices in the network may break its connectedness. Star graphs are recognized as promising candidates for interconnection networks. This article addresses the size of a largest connected component of a faulty star graph. We prove that, in an n-star graph (n >= 3) with up to 2n-4 faulty vertices, all fault-free vertices but at most two form a connected component. Moreover, all fault-free vertices but exactly two form a connected component if and only if the set of all faulty vertices is equal to the neighbourhood of a pair of fault-free adjacent vertices. These results show that star graphs exhibit excellent fault-tolerant abilities in the sense that there exists a large functional network in a faulty star graph.
Resumo:
Software representations of scenes, i.e. the modelling of objects in space, are used in many application domains. Current modelling and scene description standards focus on visualisation dimensions, and are intrinsically limited by their dependence upon their semantic interpretation and contextual application by humans. In this paper we propose the need for an open, extensible and semantically rich modelling language, which facilitates a machine-readable semantic structure. We critically review existing standards and techniques, and highlight a need for a semantically focussed scene description language. Based on this defined need we propose a preliminary solution, based on hypergraph theory, and reflect on application domains.
Resumo:
The current state of the art and direction of research in computer vision aimed at automating the analysis of CCTV images is presented. This includes low level identification of objects within the field of view of cameras, following those objects over time and between cameras, and the interpretation of those objects’ appearance and movements with respect to models of behaviour (and therefore intentions inferred). The potential ethical problems (and some potential opportunities) such developments may pose if and when deployed in the real world are presented, and suggestions made as to the necessary new regulations which will be needed if such systems are not to further enhance the power of the surveillers against the surveilled.
Resumo:
We present an efficient graph-based algorithm for quantifying the similarity of household-level energy use profiles, using a notion of similarity that allows for small time–shifts when comparing profiles. Experimental results on a real smart meter data set demonstrate that in cases of practical interest our technique is far faster than the existing method for computing the same similarity measure. Having a fast algorithm for measuring profile similarity improves the efficiency of tasks such as clustering of customers and cross-validation of forecasting methods using historical data. Furthermore, we apply a generalisation of our algorithm to produce substantially better household-level energy use forecasts from historical smart meter data.
Resumo:
The concept of being ‘patient-centric’ is a challenge to many existing healthcare service provision practices. This paper focuses on the issue of referrals, where multiple stakeholders, i.e. general practitioners and patients, are encouraged to make a consensual decision based on patient needs. In this paper, we present an ontology-enabled healthcare service provision, which facilitates both patients and GPs in jointly deciding upon the referral decision. In the healthcare service provision model, we define three types of profile, which represents different stakeholders’ requirements. This model also comprises of a set of healthcare service discovery processes: articulating a service need, matching the need with the healthcare service offerings, and deciding on a best-fit service for acceptance. As a result, the healthcare service provision can carry out coherent analysis using personalised information and iterative processes that deal with requirements change over time.