994 resultados para Genetic demography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cloud computing, resource allocation and scheduling of multiple composite web services is an important and challenging problem. This is especially so in a hybrid cloud where there may be some low-cost resources available from private clouds and some high-cost resources from public clouds. Meeting this challenge involves two classical computational problems: one is assigning resources to each of the tasks in the composite web services; the other is scheduling the allocated resources when each resource may be used by multiple tasks at different points of time. In addition, Quality-of-Service (QoS) issues, such as execution time and running costs, must be considered in the resource allocation and scheduling problem. Here we present a Cooperative Coevolutionary Genetic Algorithm (CCGA) to solve the deadline-constrained resource allocation and scheduling problem for multiple composite web services. Experimental results show that our CCGA is both efficient and scalable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter focuses on the interactions and roles between delays and intrinsic noise effects within cellular pathways and regulatory networks. We address these aspects by focusing on genetic regulatory networks that share a common network motif, namely the negative feedback loop, leading to oscillatory gene expression and protein levels. In this context, we discuss computational simulation algorithms for addressing the interplay of delays and noise within the signaling pathways based on biological data. We address implementational issues associated with efficiency and robustness. In a molecular biology setting we present two case studies of temporal models for the Hes1 gene (Monk, 2003; Hirata et al., 2002), known to act as a molecular clock, and the Her1/Her7 regulatory system controlling the periodic somite segmentation in vertebrate embryos (Giudicelli and Lewis, 2004; Horikawa et al., 2006).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Giant Long-Armed Prawn, Macrobrachium lar is a freshwater species native to the Indo-Pacific. M. lar has a long-lived, passive, pelagic marine larval stage where larvae need to colonise freshwater within three months to complete their development. Dispersal is likely to be influenced by the extensive distances larvae must transit between small oceanic islands to find suitable freshwater habitat, and by prevailing east to west wind and ocean currents in the southern Pacific Ocean. Thus, both intrinsic and extrinsic factors are likely to influence wild population structure in this species. The present study sought to define the contemporary broad and fine-scale population genetic structure of Macrobrachium lar in the south-western Pacific Ocean. Three polymorphic microsatellite loci were used to assess patterns of genetic variation within and among 19 wild adult sample sites. Statistical procedures that partition variation implied that at both spatial scales, essentially all variation was present within sample sites and differentiation among sites was low. Any differentiation observed also was not correlated with geographical distance. Statistical approaches that measure genetic distance, at the broad-scale, showed that all south-western Pacific Islands were essentially homogeneous, with the exception of a well supported divergent Cook Islands group. These findings are likely the result of some combination of factors that may include the potential for allelic homoplasy, through to the effects of sampling regime. Based on the findings, there is most likely a divergent M. lar Cook Islands clade in the south-western Pacific Ocean, resulting from prevailing ocean currents. Confirmation of this pattern will require a more detailed analysis of nDNA variation using a larger number of loci and, where possible, use of larger population sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we construct a mathematical model for the genetic regulatory network of the lactose operon. This mathematical model contains transcription and translation of the lactose permease (LacY) and a reporter gene GFP. The probability of transcription of LacY is determined by 14 binding states out of all 50 possible binding states of the lactose operon based on the quasi-steady-state assumption for the binding reactions, while we calculate the probability of transcription for the reporter gene GFP based on 5 binding states out of 19 possible binding states because the binding site O2 is missing for this reporter gene. We have tested different mechanisms for the transport of thio-methylgalactoside (TMG) and the effect of different Hill coefficients on the simulated LacY expression levels. Using this mathematical model we have realized one of the experimental results with different LacY concentrations, which are induced by different concentrations of TMG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that small genetic regulatory networks (GRNs) can be evolved in silico displaying certain dynamics in the underlying mathematical model. It is expected that evolutionary approaches can help to gain a better understanding of biological design principles and assist in the engineering of genetic networks. To take the stochastic nature of GRNs into account, our evolutionary approach models GRNs as biochemical reaction networks based on simple enzyme kinetics and simulates them by using Gillespie’s stochastic simulation algorithm (SSA). We have already demonstrated the relevance of considering intrinsic stochasticity by evolving GRNs that show oscillatory dynamics in the SSA but not in the ODE regime. Here, we present and discuss first results in the evolution of GRNs performing as stochastic switches.