979 resultados para Generated Granule Cells


Relevância:

80.00% 80.00%

Publicador:

Resumo:

L-Glutamate is the most common excitatory neurotransmitter in the brain and plays a crucial role in neuronal plasticity as well as in neurotoxicity. While a large body of literature describes the induction of immediate-early genes, including c-fos, fosB, c-jun, junB, zif/268, and krox genes by glutamate and agonists in neurons, very little is known about preexisting transcription factors controlling the induction of such genes. This prompted us to investigate whether stimulation of glutamate receptors can activate NF-kappa B, which is present in neurons in either inducible or constitutive form. Here we report that brief treatments with kainate or high potassium strongly activated NF-kappa B in granule cells from rat cerebellum. This was detected at the single cell level by immunostaining with a monoclonal antibody that selectively reacts with the transcriptionally active, nuclear form of NF-kappa B p65. The activation of NF-kappa B could be blocked with the antioxidant pyrrolidine dithiocarbamate, suggesting the involvement of reactive oxygen intermediates. The data may explain the kainate-induced cell surface expression of major histocompatibility complex class I molecules, which are encoded by genes known to be controlled by NF-kappa B. Moreover, NF-kappa B activity was found to change dramatically in neurons during development of the cerebellum between days 5 and 7 after birth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trans-synaptic activation of gene expression is linked to long-term plastic adaptations in the nervous system. To examine the molecular program induced by synaptic activity, we have employed molecular cloning techniques to identify an immediate early gene that is rapidly induced in the brain. We here report the entire nucleotide sequence of the cDNA, which encodes an open reading frame of 396 amino acids. Within the hippocampus, constitutive expression was low. Basal levels of expression in the cortex were high but can be markedly reduced by blockade of N-methyl-D-aspartate receptors. By contrast, synaptic activity induced by convulsive seizures increased mRNA levels in neurons of the cortex and hippocampus. High-frequency stimulation of the perforant path resulted in long-term potentiation and a spatially confined dramatic increase in the level of mRNA in the granule cells of the ipsilateral dentate gyrus. Transcripts were localized to the soma and to the dendrites of the granule cells. The dendritic localization of the transcripts offers the potential for local synthesis of the protein at activated postsynaptic sites and may underlie synapse-specific modifications during long-term plastic events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mitral/tufted cells (M/T cells) and granule cells form reciprocal dendrodendritic synapses in the main olfactory bulb; the granule cell is excited by glutamate from the M/T cell and in turn inhibits M/T cells by gamma-aminobutyrate. The trans-synaptically excited granule cell is thought to induce lateral inhibition in neighboring M/T cells and to refine olfactory information. It remains, however, elusive how significantly and specifically this synaptic regulation contributes to the discrimination of different olfactory stimuli. This investigation concerns the mechanism of olfactory discrimination by single unit recordings of responses to a series of normal aliphatic aldehydes from individual rabbit M/T cells. This analysis revealed that inhibitory responses are evoked in a M/T cell by a defined subset of odor molecules with structures closely related to the excitatory odor molecules. Furthermore, blockade of the reciprocal synaptic transmission by the glutamate receptor antagonist or the gamma-aminobutyrate receptor antagonist markedly suppressed the odor-evoked inhibition, indicating that the inhibitory responses are evoked by lateral inhibition via the reciprocal synaptic transmission. The synaptic regulation in the olfactory bulb thus greatly enhances the tuning specificity of odor responses and would contribute to discrimination of olfactory information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tumour progression is a complex process that frequently brings to cancer metastasis, the first cause of poor prognosis of cancer affected patients. Metastasis are generated by cells escaped from a primary mass and able to enter in the circulation, survive and proliferate in a new, distant site of the organism. To reach all these goal, many different phenomena had occur within both the cancer cells and the surrounding microenvironment. In the first part of this thesis, the focus was pointed on the metastatic potential of a leiomyosarcoma cell model. The studied cancer cells demonstrated a strong invasive capacity of the ECM in vitro, principally by production of matrix metalloproteinases 2 and 9, and robust pro-angiogenic activity in the chick CAM model, that facilitate its dissemination through same chick embryo internal organs. This study, with the title “MMPs and angiogenesis affect the metastatic potential of a human vulvar leiomyosarcoma cell line”, is presented in the published form. In the second part of this work, the emphasis was given to the microvascular element of the tumour microenvironment and specifically to the perivascular pericytes. These are intriguing cells due to their uncertain involvement in the biology of cancer. It is not clear how pericytes change within the tumour microenvironment and which is their contribute during the tumour dissemination. After the characterization of the chosen pericytic cell model, an in vitro study of the interaction between pericytes and different cancer cell lines where performed. Indirect and direct cell-cell interaction as well as movement of cancer cells in presence of pericytes conditioned media was analysed, in order to investigate the reciprocal influence of pericytes and tumour cells in the context of cancer progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In cell lifespan studies the exponential nature of cell survival curves is often interpreted as showing the rate of death is independent of the age of the cells within the population. Here we present an alternative model where cells that die are replaced and the age and lifespan of the population pool is monitored until a, steady state is reached. In our model newly generated individual cells are given a determined lifespan drawn from a number of known distributions including the lognormal, which is frequently found in nature. For lognormal lifespans the analytic steady-state survival curve obtained can be well-fit by a single or double exponential, depending on the mean and standard deviation. Thus, experimental evidence for exponential lifespans of one and/or two populations cannot be taken as definitive evidence for time and age independence of cell survival. A related model for a dividing population in steady state is also developed. We propose that the common adoption of age-independent, constant rates of change in biological modelling may be responsible for significant errors, both of interpretation and of mathematical deduction. We suggest that additional mathematical and experimental methods must be used to resolve the relationship between time and behavioural changes by cells that are predominantly unsynchronized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In patients with Pick's disease (PD), high densities of tau positive Pick bodies (PB) have been observed within the granule cell layer of the dentate gyrus. This study investigated the spatial patterns of PB along the granule cell layer in coronal sections of the hippocampus in eight patients with PD. In all patients, there was evidence of clustering of PB within the granule cell layer; however, there was considerable variation in the pattern of clustering. In five patients, the clusters of PB were regularly distributed along the dentate gyms, and in two of these patients, the smaller clusters were aggregated into larger superclusters. In three patients, a single large cluster of PB, more than 1200 μm in diameter, was present. Clustering of PB may reflect a primary degenerative process within the granule cells or the degeneration of pathways that project to the dentate gyrus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The densities of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) in the frontal and temporal lobe were determined in ten patients diagnosed with Pick's disease (PD). The density of PB was significantly higher in the dentate gyrus granule cells compared with the cortex and the CA sectors of the hippocampus. Within the hippocampus, the highest densities of PB were observed in sector CA1. PC were absent in the dentate gyrus and no significant differences in PC density were observed in the remaining brain regions. With the exception of two patients, the densities of SP and NFT were low with no significant differences in mean densities between cortical regions. In the hippocampus, the density of NFT was greatest in sector CA1. PB and PC densities were positively correlated in the frontal cortex but no correlations were observed between the PD and AD lesions. A principal components analysis (PCA) of the neuropathological variables suggested that variations in the densities of SP in the frontal cortex, temporal cortex and hippocampus were the most important sources of heterogeneity within the patient group. Variations in the densities of PB and NFT in the temporal cortex and hippocampus were of secondary importance. In addition, the PCA suggested that two of the ten patients were atypical. One patient had a higher than average density of SP and one familial patient had a higher density of NFT but few SP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders could be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) were present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits were distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there was significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varied significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders can be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) are present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits are distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there is significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varies significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hippocampus (HC) and adjacent gyri are implicated in dementia in several neurodegenerative disorders. To compare HC pathology among disorders, densities of ‘signature’ pathological lesions were measured at a standard location in eight brain regions of 12 disorders. Principal components analysis of the data suggested that the disorders could be divided into three groups: (1) Alzheimer’s disease (AD), Down’s syndrome (DS), sporadic Creutzfeldt–Jakob disease, and variant Creutzfeldt–Jakob disease in which either β-amyloid (Aβ) or prion protein deposits were distributed in all sectors of the HC and adjacent gyri, with high densities being recorded in the parahippocampal gyrus and subiculum; (2) Pick’s disease, sporadic frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions, and neuronal intermediate filament inclusion disease in which relatively high densities of neuronal cytoplasmic inclusions were present in the dentate gyrus (DG) granule cells; and (3) Parkinson’s disease dementia, dementia with Lewy bodies, progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy in which densities of signature lesions were relatively low. Variation in density of signature lesions in DG granule cells and CA1 were the most important sources of neuropathological variation among disorders. Hence, HC and adjacent gyri are differentially affected in dementia reflecting either variation in vulnerability of hippocampal neurons to specific molecular pathologies or in the spread of pathological proteins to the HC. Information regarding the distribution of pathology could ultimately help to explain variations in different cognitive domains, such as memory, observed in various disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dictyostelium discoideum is a simple model organism that can be used to study endocytic pathways such as phagocytosis and macropinocytosis because of its homology to cells of the mammalian innate immune system, namely macrophages and neutrophils. Consequently, Dictyostelium can also be used to study the process of exocytosis. In our laboratory, we generated Dictyostelium cells lacking superoxide dismutase SodC. Our data suggest that cells that lack SodC are defective in macropinocytosis and exocytosis when compared to wild type cells. In this study I describe a regulatory mechanism of macropinocytosis by SodC via regulation of RasG, which in turn controls PI3K activation and thus macropinocytosis. Our results show that proper metabolism of superoxide is critical for efficient particle uptake, for the proper trafficking of internalized particles, and a timely exocytosis of fluid uptake in Dictyostelium cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chez l’humain, les lymphocytes B mémoires IgG+ et IgA+ sont des cellules clés de l’immunité humorale. Ces cellules mémoires sont maintenues à long-terme dans notre organisme. Elles représentent une défense rapide et efficace contre toutes les infections que nous avons déjà vaincues pendant notre vie. Ces cellules mémoires qui rencontrent à nouveau leur antigène se différencient rapidement en plasmocytes à courte vie, et permettent la sécrétion massive d’immunoglobuline (Ig). La contrepartie mémoire de ces cellules sont les plasmocytes à longue vie qui sont présents dans les niches de la moelle osseuse et y sécrètent en permanence des anticorps protecteurs qui circulent dans le sang. Ces cellules sécrétrices peuvent avoir une durée de vie allant de dizaines d’années à la vie entière de l’individu. Les patients qui reçoivent des traitements de chimiothérapie ou de radiothérapie sont privés de ces cellules mémoires détruites par ces traitements au même titre que les cellules cancéreuses. Ces patients deviennent vulnérables aux infections et leur survie dépend de la régénération rapide de leur système hématopoïétique. Notre équipe a déjà mis au point une méthode pour préparer de grandes quantités des cellules mémoires capables de sécréter des IgG et des IgA. Les présents travaux visent à générer des plasmocytes fonctionnels et capables de survivre à long terme in vitro. La stratégie expérimentale visait à établir des conditions permettant de se rapprocher de l’environnement de la moelle osseuse. Dans un premier temps, nous avons étudié les paramètres permettant la différenciation des lymphocytes B mémoires en plasmocytes. Étant donné l’importance du potentiel redox dans l’environnement de la moelle osseuse, nous avons d’abord tenté d’en contrôler l’impact avec un antioxydant, le N-acétyle cystéine (NAC). Nos résultats ont démontré que le NAC avait un effet significatif et diminuait la phosphorylation de la protéine STAT3 en raison d’une inhibition des kinases JAK2 et JAK3. Étonnamment, cet antioxydant retardait la différenciation de nos lymphocytes B qui étaient stimulés avec une forte interaction CD40-CD154. Par la suite, la comparaison des interactions CD40-CD154 et CD27-CD70 a permis de conclure qu’il était essentiel de réduire à son minimum l’interaction CD40-CD154 et qu’il fallait ajouter les cytokines IL-6 et IL-10. Les cellules CD31+CD38+CD138+ générées présentaient un phénotype similaire à celui des plasmocytes de la moelle osseuse. Malheureusement la fréquence de ces cellules était faible et leur viabilité insuffisante. Afin d’augmenter la survie de ces cellules le dernier volet de nos travaux visait à se rapprocher des niches de la moelle osseuse. Notre but a été atteint en ajoutant des cellules mésenchymateuses issues de la moelle osseuse en présence de 8% de dioxygène (O2). Les cellules CD31+CD38+CD138+ générées ont une excellente viabilité et représentent plus de 50% des cellules totales en culture. De plus, le modèle de culture est maintenant établi dans un milieu exempt de sérum et de protéines animales. Dans l’ensemble, nos résultats permettent de proposer la production ex vivo de plasmocytes autologues avec une perspective thérapeutique pour réduire les risques d’infections des patients devenues immunodéficients, suite à un traitement de radiothérapie ou de chimiothérapie.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanism of generation of memory cytotoxic T cells (CTL) following immunization remains controversial. Using tumor protection and IFN-gamma ELISPOT assays in mice to detect functional CTL, we show that the initial effector CTL burst size after immunization is not directly related to the amount of functional memory CTL formed, suggesting that memory CTL are unlikely to arise stochastically from effector CTL. Induction of MHC class II-restricted T helper cells at the time of immunization by inclusion of a T helper peptide or protein in the immunogen, is necessary to generate memory CTL, although no T helper cell induction is required to generate effector CTL to a strong MHC class I-binding peptide. Host protective T cell memory correlates with the number of CTL epitope responsive IFN-gamma-secreting memory T cells as measured in an ELISPOT assay at the time of tumor challenge. We conclude that a different antigen presenting environment is required to induce long-lasting functional memory CTL, and non-cognate stimulation of the immune system is essential to allow generation of a long-lasting host protective memory CTL response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Up-regulation of receptor-ligand pairs during interaction of an MHC-presented epitope on dendritic cells (DCs) with cognate TCR may amplify, sustain, and drive diversity in the ensuing T cell immune response. Members of the TNF ligand superfamily and the TNFR superfamily contribute to this costimulatory molecule signaling. In this study, we used replication deficient adenoviruses to introduce a model tumor-associated Ag (the E7 oncoprotein of human papillomavirus 16) and the T cell costimulatory molecule 4-IBBL into murine DCs, and monitored the ability of these recombinant DO to elicit E7-directed T cell responses following immunization. Splenocytes from mice immunized with DCs expressing E7 alone elicited E7-directed effector and memory CTL responses. Coexpression of 4-1BBL in these E7-expressing DO increased effector and memory CTL responses when they were used for immunization. 4-1BBL expression up-regulated CD80 and CD86 second signaling molecules in DO. We also report an additive effect of 4-IBBL and receptor activator of NF-kappaB/receptor activator of NF-kappaB ligand coexpression in E7-transduced DC inummogens on E7-directed effector and memory CTL responses and on MHC class II and CD80/86 expression in DCs. Additionally, expression of 4-1BBL in E7-transduced DCs reduced nonspecific T cell activation characteristic of adenovirus vector-associated immunization. The results have generic implications for improved or tumor Ag-expressing DC vaccines by incorporation of exogenous 4-1BBL. There are also specific implications for an improved DC-based vaccine for human papillomavirus 16-associated cervical carcinoma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fas (CD95/Apo-1) ligand is a potent inducer of apoptosis and one of the major killing effector mechanisms of cytotoxic T cells. Thus, Fas ligand activity has to be tightly regulated, involving various transcriptional and post-transcriptional processes. For example, preformed Fas ligand is stored in secretory lysosomes of activated T cells, and rapidly released by degranulation upon reactivation. In this study, we analyzed the minimal requirements for activation-induced degranulation of Fas ligand. T cell receptor activation can be mimicked by calcium ionophore and phorbol ester. Unexpectedly, we found that stimulation with phorbol ester alone is sufficient to trigger Fas ligand release, whereas calcium ionophore is neither sufficient nor necessary. The relevance of this process was confirmed in primary CD4(+) and CD8(+) T cells and NK cells. Although the activation of protein kinase(s) was absolutely required for Fas ligand degranulation, protein kinase C or A were not involved. Previous reports have shown that preformed Fas ligand co-localizes with other markers of cytolytic granules. We found, however, that the activation-induced degranulation of Fas ligand has distinct requirements and involves different mechanisms than those of the granule markers CD63 and CD107a/Lamp-1. We conclude that activation-induced degranulation of Fas ligand in cytotoxic lymphocytes is differently regulated than other classical cytotoxic granule proteins.