938 resultados para Generalized Gaussian-noise


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Orthogonal frequency division multiplexing (OFDM) systems are more sensitive to carrier frequency offset (CFO) compared to the conventional single carrier systems. CFO destroys the orthogonality among subcarriers, resulting in inter-carrier interference (ICI) and degrading system performance. To mitigate the effect of the CFO, it has to be estimated and compensated before the demodulation. The CFO can be divided into an integer part and a fractional part. In this paper, we investigate a maximum-likelihood estimator (MLE) for estimating the integer part of the CFO in OFDM systems, which requires only one OFDM block as the pilot symbols. To reduce the computational complexity of the MLE and improve the bandwidth efficiency, a suboptimum estimator (Sub MLE) is studied. Based on the hypothesis testing method, a threshold Sub MLE (T-Sub MLE) is proposed to further reduce the computational complexity. The performance analysis of the proposed T-Sub MLE is obtained and the analytical results match the simulation results well. Numerical results show that the proposed estimators are effective and reliable in both additive white Gaussian noise (AWGN) and frequency-selective fading channels in OFDM systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The least-mean-fourth (LMF) algorithm is known for its fast convergence and lower steady state error, especially in sub-Gaussian noise environments. Recent work on normalised versions of the LMF algorithm has further enhanced its stability and performance in both Gaussian and sub-Gaussian noise environments. For example, the recently developed normalised LMF (XE-NLMF) algorithm is normalised by the mixed signal and error powers, and weighted by a fixed mixed-power parameter. Unfortunately, this algorithm depends on the selection of this mixing parameter. In this work, a time-varying mixed-power parameter technique is introduced to overcome this dependency. A convergence analysis, transient analysis, and steady-state behaviour of the proposed algorithm are derived and verified through simulations. An enhancement in performance is obtained through the use of this technique in two different scenarios. Moreover, the tracking analysis of the proposed algorithm is carried out in the presence of two sources of nonstationarities: (1) carrier frequency offset between transmitter and receiver and (2) random variations in the environment. Close agreement between analysis and simulation results is obtained. The results show that, unlike in the stationary case, the steady-state excess mean-square error is not a monotonically increasing function of the step size. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of 'quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modern telecommunication industry demands higher capacity networks with high data rate. Orthogonal frequency division multiplexing (OFDM) is a promising technique for high data rate wireless communications at reasonable complexity in wireless channels. OFDM has been adopted for many types of wireless systems like wireless local area networks such as IEEE 802.11a, and digital audio/video broadcasting (DAB/DVB). The proposed research focuses on a concatenated coding scheme that improve the performance of OFDM based wireless communications. It uses a Redundant Residue Number System (RRNS) code as the outer code and a convolutional code as the inner code. The bit error rate (BER) performances of the proposed system under different channel conditions are investigated. These include the effect of additive white Gaussian noise (AWGN), multipath delay spread, peak power clipping and frame start synchronization error. The simulation results show that the proposed RRNS-Convolutional concatenated coding (RCCC) scheme provides significant improvement in the system performance by exploiting the inherent properties of RRNS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modeling nonlinear systems using Volterra series is a century old method but practical realizations were hampered by inadequate hardware to handle the increased computational complexity stemming from its use. But interest is renewed recently, in designing and implementing filters which can model much of the polynomial nonlinearities inherent in practical systems. The key advantage in resorting to Volterra power series for this purpose is that nonlinear filters so designed can be made to work in parallel with the existing LTI systems, yielding improved performance. This paper describes the inclusion of a quadratic predictor (with nonlinearity order 2) with a linear predictor in an analog source coding system. Analog coding schemes generally ignore the source generation mechanisms but focuses on high fidelity reconstruction at the receiver. The widely used method of differential pnlse code modulation (DPCM) for speech transmission uses a linear predictor to estimate the next possible value of the input speech signal. But this linear system do not account for the inherent nonlinearities in speech signals arising out of multiple reflections in the vocal tract. So a quadratic predictor is designed and implemented in parallel with the linear predictor to yield improved mean square error performance. The augmented speech coder is tested on speech signals transmitted over an additive white gaussian noise (AWGN) channel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the thesis was to design and develop spatially adaptive denoising techniques with edge and feature preservation, for images corrupted with additive white Gaussian noise and SAR images affected with speckle noise. Image denoising is a well researched topic. It has found multifaceted applications in our day to day life. Image denoising based on multi resolution analysis using wavelet transform has received considerable attention in recent years. The directionlet based denoising schemes presented in this thesis are effective in preserving the image specific features like edges and contours in denoising. Scope of this research is still open in areas like further optimization in terms of speed and extension of the techniques to other related areas like colour and video image denoising. Such studies would further augment the practical use of these techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work compares classification results of lactose, mandelic acid and dl-mandelic acid, obtained on the basis of their respective THz transients. The performance of three different pre-processing algorithms applied to the time-domain signatures obtained using a THz-transient spectrometer are contrasted by evaluating the classifier performance. A range of amplitudes of zero-mean white Gaussian noise are used to artificially degrade the signal-to-noise ratio of the time-domain signatures to generate the data sets that are presented to the classifier for both learning and validation purposes. This gradual degradation of interferograms by increasing the noise level is equivalent to performing measurements assuming a reduced integration time. Three signal processing algorithms were adopted for the evaluation of the complex insertion loss function of the samples under study; a) standard evaluation by ratioing the sample with the background spectra, b) a subspace identification algorithm and c) a novel wavelet-packet identification procedure. Within class and between class dispersion metrics are adopted for the three data sets. A discrimination metric evaluates how well the three classes can be distinguished within the frequency range 0. 1 - 1.0 THz using the above algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Greater attention has been focused on the use of CDMA for future cellular mobile communications. CA near-far resistant detector for asynchronous code-division multiple-access (CDMA) systems operating in additive white Gaussian noise (AWGN) channels is presented. The multiuser interference caused by K users transmitting simultaneously, each with a specific signature sequence, is completely removed at the receiver. The complexity of this detector grows only linearly with the number of users, as compared to the optimum multiuser detector which requires exponential complexity in the number of users. A modified algorithm based on time diversity is described. It performs detection on a bit-by-bit basis and overcomes the complexity of using a sequence detector. The performance of this detector is shown to be superior to that of the conventional receiver.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We bridge the properties of the regular triangular, square, and hexagonal honeycomb Voronoi tessellations of the plane to the Poisson-Voronoi case, thus analyzing in a common framework symmetry breaking processes and the approach to uniform random distributions of tessellation-generating points. We resort to ensemble simulations of tessellations generated by points whose regular positions are perturbed through a Gaussian noise, whose variance is given by the parameter α2 times the square of the inverse of the average density of points. We analyze the number of sides, the area, and the perimeter of the Voronoi cells. For all valuesα >0, hexagons constitute the most common class of cells, and 2-parameter gamma distributions provide an efficient description of the statistical properties of the analyzed geometrical characteristics. The introduction of noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α = 0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise withα <0.12. For all tessellations and for small values of α, we observe a linear dependence on α of the ensemble mean of the standard deviation of the area and perimeter of the cells. Already for a moderate amount of Gaussian noise (α >0.5), memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α >2, results converge to those of Poisson-Voronoi tessellations. The geometrical properties of n-sided cells change with α until the Poisson- Voronoi limit is reached for α > 2; in this limit the Desch law for perimeters is shown to be not valid and a square root dependence on n is established. This law allows for an easy link to the Lewis law for areas and agrees with exact asymptotic results. Finally, for α >1, the ensemble mean of the cells area and perimeter restricted to the hexagonal cells agree remarkably well with the full ensemble mean; this reinforces the idea that hexagons, beyond their ubiquitous numerical prominence, can be interpreted as typical polygons in 2D Voronoi tessellations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyse in a common framework the properties of the Voronoi tessellations resulting from regular 2D and 3D crystals and those of tessellations generated by Poisson distributions of points, thus joining on symmetry breaking processes and the approach to uniform random distributions of seeds. We perturb crystalline structures in 2D and 3D with a spatial Gaussian noise whose adimensional strength is α and analyse the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. In 2D we consider triangular, square and hexagonal regular lattices, resulting into hexagonal, square and triangular tessellations, respectively. In 3D we consider the simple cubic (SC), body-centred cubic (BCC), and face-centred cubic (FCC) crystals, whose corresponding Voronoi cells are the cube, the truncated octahedron, and the rhombic dodecahedron, respectively. In 2D, for all values α>0, hexagons constitute the most common class of cells. Noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α=0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise with α<0.12. Basically, the same happens in the 3D case, where only the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. In both 2D and 3D cases, already for a moderate amount of Gaussian noise (α>0.5), memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α>2, results converge to those of Poisson-Voronoi tessellations. In 2D, while the isoperimetric ratio increases with noise for the perturbed hexagonal tessellation, for the perturbed triangular and square tessellations it is optimised for specific value of noise intensity. The same applies in 3D, where noise degrades the isoperimetric ratio for perturbed FCC and BCC lattices, whereas the opposite holds for perturbed SCC lattices. This allows for formulating a weaker form of the Kelvin conjecture. By analysing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape heavily fluctuates when noise is introduced in the system. In 2D, the geometrical properties of n-sided cells change with α until the Poisson-Voronoi limit is reached for α>2; in this limit the Desch law for perimeters is shown to be not valid and a square root dependence on n is established, which agrees with exact asymptotic results. Anomalous scaling relations are observed between the perimeter and the area in the 2D and between the areas and the volumes of the cells in 3D: except for the hexagonal (2D) and FCC structure (3D), this applies also for infinitesimal noise. In the Poisson-Voronoi limit, the anomalous exponent is about 0.17 in both the 2D and 3D case. A positive anomaly in the scaling indicates that large cells preferentially feature large isoperimetric quotients. As the number of faces is strongly correlated with the sphericity (cells with more faces are bulkier), in 3D it is shown that the anomalous scaling is heavily reduced when we perform power law fits separately on cells with a specific number of faces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. For weak noise, the mean area of the perturbed BCC and FCC crystals VT increases quadratically with a. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate noise (a>0.5), the properties of the three perturbed VT are indistinguishable, and for intense noise (a>2), results converge to the Poisson-VT limit. Notably, 2-parameter gamma distributions are an excellent model for the empirical of of all considered properties. The VT of the perturbed BCC and FCC structures are local maxima for the isoperimetric quotient, which measures the degre of sphericity of the cells, among space filling VT. In the BCC case, this suggests a weaker form of the recentluy disproved Kelvin conjecture. Due to the fluctuations of the shape of the cells, anomalous scalings with exponents >3/2 is observed between the area and the volumes of the cells, and, except for the FCC case, also for a->0. In the Poisson-VT limit, the exponent is about 1.67. As the number of faces is positively correlated with the sphericity of the cells, the anomalous scaling is heavily reduced when we perform powerlaw fits separately on cells with a specific number of faces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Consideration is given to a standard CDMA system and determination of the density function of the interference with and without Gaussian noise using sampling theory concepts. The formula derived provides fast and accurate results and is a simple, useful alternative to other methods

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of calculating the probability of error in a DS/SSMA system has been extensively studied for more than two decades. When random sequences are employed some conditioning must be done before the application of the central limit theorem is attempted, leading to a Gaussian distribution. The authors seek to characterise the multiple access interference as a random-walk with a random number of steps, for random and deterministic sequences. Using results from random-walk theory, they model the interference as a K-distributed random variable and use it to calculate the probability of error in the form of a series, for a DS/SSMA system with a coherent correlation receiver and BPSK modulation under Gaussian noise. The asymptotic properties of the proposed distribution agree with other analyses. This is, to the best of the authors' knowledge, the first attempt to propose a non-Gaussian distribution for the interference. The modelling can be extended to consider multipath fading and general modulation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern wireless systems employ adaptive techniques to provide high throughput while observing desired coverage, Quality of Service (QoS) and capacity. An alternative to further enhance data rate is to apply cognitive radio concepts, where a system is able to exploit unused spectrum on existing licensed bands by sensing the spectrum and opportunistically access unused portions. Techniques like Automatic Modulation Classification (AMC) could help or be vital for such scenarios. Usually, AMC implementations rely on some form of signal pre-processing, which may introduce a high computational cost or make assumptions about the received signal which may not hold (e.g. Gaussianity of noise). This work proposes a new method to perform AMC which uses a similarity measure from the Information Theoretic Learning (ITL) framework, known as correntropy coefficient. It is capable of extracting similarity measurements over a pair of random processes using higher order statistics, yielding in better similarity estimations than by using e.g. correlation coefficient. Experiments carried out by means of computer simulation show that the technique proposed in this paper presents a high rate success in classification of digital modulation, even in the presence of additive white gaussian noise (AWGN)