976 resultados para GENERALIZED EXPONENTIAL DISTRIBUTION
Resumo:
Um evento extremo de precipitação ocorreu na primeira semana do ano 2000, de 1º a 5 de janeiro, no Vale do Paraíba, parte leste do Estado de São Paulo, Brasil, causando enorme impacto socioeconômico, com mortes e destruição. Este trabalho estudou este evento em 10 estações meteorológicas selecionadas que foram consideradas como aquelas tendo dados mais homogêneos do Que outras estações na região. O modelo de distribuição generalizada de Pareto (DGP) para valores extremos de precipitação de 5 dias foi desenvolvido, individualmente para cada uma dessas estações. Na modelagem da DGP, foi adotada abordagem não-estacionaria considerando o ciclo anual e tendência de longo prazo como co-variaveis. Uma conclusão desta investigação é que as quantidades de precipitação acumulada durante os 5 dias do evento estudado podem ser classificadas como extremamente raras para a região, com probabilidade de ocorrência menor do que 1% para maioria das estações, e menor do que 0,1% em três estações.
Resumo:
The metal-insulator or metal-amorphous semiconductor blocking contact is still not well understood. Here, we discuss the steady state characteristics of a non-intimate metal-insulator Schottky barrier. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We present analytical expressions for the electrical potential, field, thickness of depletion region, capacitance, and charge accumulated in the depletion region. We also discuss ln I versus V(ap) data. Finally, we compare the characteristics in three cases: (i) impurity states at only a single energy level; (ii) uniform energy distribution of impurity states; and (iii) exponential energy distribution of impurity states.In general, the electrical characteristics of Schottky barriers and metal-insulator-metal structures with Schottky barriers depend strongly on the energy distribution of impurity states.
Resumo:
When the (X) over bar chart is in use, samples are regularly taken from the process, and their means are plotted on the chart. In some cases, it is too expensive to obtain the X values, but not the values of a correlated variable Y. This paper presents a model for the economic design of a two-stage control chart, that is. a control chart based on both performance (X) and surrogate (Y) variables. The process is monitored by the surrogate variable until it signals an out-of-control behavior, and then a switch is made to the (X) over bar chart. The (X) over bar chart is built with central, warning. and action regions. If an X sample mean falls in the central region, the process surveillance returns to the (Y) over bar chart. Otherwise. The process remains under the (X) over bar chart's surveillance until an (X) over bar sample mean falls outside the control limits. The search for an assignable cause is undertaken when the performance variable signals an out-of-control behavior. In this way, the two variables, are used in an alternating fashion. The assumption of an exponential distribution to describe the length of time the process remains in control allows the application of the Markov chain approach for developing the cost function. A study is performed to examine the economic advantages of using performance and surrogate variables. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Recent studies have shown that adaptive X control charts are quicker than traditional X charts in detecting small to moderate shifts in a process. In this article, we propose a joint statistical design of adaptive X and R charts having all design parameters varying adaptively. The process is subjected to two independent assignable causes. One cause changes the process mean and the other changes the process variance. However, the occurrence of one kind of assignable cause does not preclude the occurrence of the other. It is assumed that the quality characteristic is normally distributed and the time that the process remains in control has exponential distribution. Performance measures of these adaptive control charts are obtained through a Markov chain approach. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an economic design of (X) over bar control charts with variable sample sizes, variable sampling intervals, and variable control limits. The sample size n, the sampling interval h, and the control limit coefficient k vary between minimum and maximum values, tightening or relaxing the control. The control is relaxed when an (X) over bar value falls close to the target and is tightened when an (X) over bar value falls far from the target. A cost model is constructed that involves the cost of false alarms, the cost of finding and eliminating the assignable cause, the cost associated with production in an out-of-control state, and the cost of sampling and testing. The assumption of an exponential distribution to describe the length of time the process remains in control allows the application of the Markov chain approach for developing the cost function. A comprehensive study is performed to examine the economic advantages of varying the (X) over bar chart parameters.
Resumo:
This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of São Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of São Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society
Resumo:
We discuss non-steady state electrical characteristics of a metal-insulator-metal structure. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We discuss thermal as well as isothermal characteristics and present an expression for the temperature of maximum current (Tm) and a method to calculate the density of exponentially distributed impurity states. We plot the theoretical curves for various sets of parameters and the variation of Tm, and Im (maximum current) with applied potential for various impurity distributions. The present model can explain the available experimental results. Finally we compare the non-steady state characteristics in three cases: (i) impurity states only at a single energy level, (ii) uniform energetic distribution of impurity states, and (iii) exponential energetic distribution of impurity states.
Resumo:
Recent theoretical studies have shown that the X̄ chart with variable sampling intervals (VSI) and the X̄ chart with variable sample size (VSS) are quicker than the traditional X̄ chart in detecting shifts in the process. This article considers the X̄ chart with variable sample size and sampling intervals (VSSI). It is assumed that the amount of time the process remains in control has exponential distribution. The properties of the VSSI X̄ chart are obtained using Markov chains. The VSSI X̄ chart is even quicker than the VSI or VSS X̄ charts in detecting moderate shifts in the process.
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
In this paper we propose a hybrid hazard regression model with threshold stress which includes the proportional hazards and the accelerated failure time models as particular cases. To express the behavior of lifetimes the generalized-gamma distribution is assumed and an inverse power law model with a threshold stress is considered. For parameter estimation we develop a sampling-based posterior inference procedure based on Markov Chain Monte Carlo techniques. We assume proper but vague priors for the parameters of interest. A simulation study investigates the frequentist properties of the proposed estimators obtained under the assumption of vague priors. Further, some discussions on model selection criteria are given. The methodology is illustrated on simulated and real lifetime data set.
Resumo:
In the past decade, the advent of efficient genome sequencing tools and high-throughput experimental biotechnology has lead to enormous progress in the life science. Among the most important innovations is the microarray tecnology. It allows to quantify the expression for thousands of genes simultaneously by measurin the hybridization from a tissue of interest to probes on a small glass or plastic slide. The characteristics of these data include a fair amount of random noise, a predictor dimension in the thousand, and a sample noise in the dozens. One of the most exciting areas to which microarray technology has been applied is the challenge of deciphering complex disease such as cancer. In these studies, samples are taken from two or more groups of individuals with heterogeneous phenotypes, pathologies, or clinical outcomes. these samples are hybridized to microarrays in an effort to find a small number of genes which are strongly correlated with the group of individuals. Eventhough today methods to analyse the data are welle developed and close to reach a standard organization (through the effort of preposed International project like Microarray Gene Expression Data -MGED- Society [1]) it is not unfrequant to stumble in a clinician's question that do not have a compelling statistical method that could permit to answer it.The contribution of this dissertation in deciphering disease regards the development of new approaches aiming at handle open problems posed by clinicians in handle specific experimental designs. In Chapter 1 starting from a biological necessary introduction, we revise the microarray tecnologies and all the important steps that involve an experiment from the production of the array, to the quality controls ending with preprocessing steps that will be used into the data analysis in the rest of the dissertation. While in Chapter 2 a critical review of standard analysis methods are provided stressing most of problems that In Chapter 3 is introduced a method to adress the issue of unbalanced design of miacroarray experiments. In microarray experiments, experimental design is a crucial starting-point for obtaining reasonable results. In a two-class problem, an equal or similar number of samples it should be collected between the two classes. However in some cases, e.g. rare pathologies, the approach to be taken is less evident. We propose to address this issue by applying a modified version of SAM [2]. MultiSAM consists in a reiterated application of a SAM analysis, comparing the less populated class (LPC) with 1,000 random samplings of the same size from the more populated class (MPC) A list of the differentially expressed genes is generated for each SAM application. After 1,000 reiterations, each single probe given a "score" ranging from 0 to 1,000 based on its recurrence in the 1,000 lists as differentially expressed. The performance of MultiSAM was compared to the performance of SAM and LIMMA [3] over two simulated data sets via beta and exponential distribution. The results of all three algorithms over low- noise data sets seems acceptable However, on a real unbalanced two-channel data set reagardin Chronic Lymphocitic Leukemia, LIMMA finds no significant probe, SAM finds 23 significantly changed probes but cannot separate the two classes, while MultiSAM finds 122 probes with score >300 and separates the data into two clusters by hierarchical clustering. We also report extra-assay validation in terms of differentially expressed genes Although standard algorithms perform well over low-noise simulated data sets, multi-SAM seems to be the only one able to reveal subtle differences in gene expression profiles on real unbalanced data. In Chapter 4 a method to adress similarities evaluation in a three-class prblem by means of Relevance Vector Machine [4] is described. In fact, looking at microarray data in a prognostic and diagnostic clinical framework, not only differences could have a crucial role. In some cases similarities can give useful and, sometimes even more, important information. The goal, given three classes, could be to establish, with a certain level of confidence, if the third one is similar to the first or the second one. In this work we show that Relevance Vector Machine (RVM) [2] could be a possible solutions to the limitation of standard supervised classification. In fact, RVM offers many advantages compared, for example, with his well-known precursor (Support Vector Machine - SVM [3]). Among these advantages, the estimate of posterior probability of class membership represents a key feature to address the similarity issue. This is a highly important, but often overlooked, option of any practical pattern recognition system. We focused on Tumor-Grade-three-class problem, so we have 67 samples of grade I (G1), 54 samples of grade 3 (G3) and 100 samples of grade 2 (G2). The goal is to find a model able to separate G1 from G3, then evaluate the third class G2 as test-set to obtain the probability for samples of G2 to be member of class G1 or class G3. The analysis showed that breast cancer samples of grade II have a molecular profile more similar to breast cancer samples of grade I. Looking at the literature this result have been guessed, but no measure of significance was gived before.
Resumo:
We present an analysis of daily extreme precipitation events for the extended winter season (October–March) at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions and an increase of the low- to mid-tropospheric moisture. Furthermore, the jet stream position (during ≥5-year return level events) supports the eastern basin being in a divergence area, where ascent motions are favoured. Our results contribute to an improved understanding of daily precipitation extremes in the cold season and associated large scale atmospheric features.