982 resultados para Functional equations.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier–Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager–Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherWe adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we consider the application of the generalization of the symmetric version of the interior penalty discontinuous Galerkin finite element method to the numerical approximation of the compressible Navier--Stokes equations. In particular, we consider the a posteriori error analysis and adaptive mesh design for the underlying discretization method. Indeed, by employing a duality argument (weighted) Type I a posteriori bounds are derived for the estimation of the error measured in terms of general target functionals of the solution; these error estimates involve the product of the finite element residuals with local weighting terms involving the solution of a certain dual problem that must be numerically approximated. This general approach leads to the design of economical finite element meshes specifically tailored to the computation of the target functional of interest, as well as providing efficient error estimation. Numerical experiments demonstrating the performance of the proposed approach will be presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we propose a new symmetric version of the interior penalty discontinuous Galerkin finite element method for the numerical approximation of the compressible Navier-Stokes equations. Here, particular emphasis is devoted to the construction of an optimal numerical method for the evaluation of certain target functionals of practical interest, such as the lift and drag coefficients of a body immersed in a viscous fluid. With this in mind, the key ingredients in the construction of the method include: (i) An adjoint consistent imposition of the boundary conditions; (ii) An adjoint consistent reformulation of the underlying target functional of practical interest; (iii) Design of appropriate interior-penalty stabilization terms. Numerical experiments presented within this article clearly indicate the optimality of the proposed method when the error is measured in terms of both the L_2-norm, as well as for certain target functionals. Computational comparisons with other discontinuous Galerkin schemes proposed in the literature, including the second scheme of Bassi & Rebay, cf. [11], the standard SIPG method outlined in [25], and an NIPG variant of the new scheme will be undertaken.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aijt-Sahalia (2002) introduced a method to estimate transitional probability densities of di®usion processes by means of Hermite expansions with coe±cients determined by means of Taylor series. This note describes a numerical procedure to ¯nd these coe±cients based on the calculation of moments. One advantage of this procedure is that it can be used e®ectively when the mathematical operations required to ¯nd closed-form expressions for these coe±cients are otherwise infeasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report fully summarises a project designed to enhance commercial real estate performance within both operational and investment contexts through the development of a model aimed at supporting improved decision-making. The model is based on a risk adjusted discounted cash flow, providing a valuable toolkit for building managers, owners, and potential investors for evaluating individual building performance in terms of financial, social and environmental criteria over the complete life-cycle of the asset. The ‘triple bottom line’ approach to the evaluation of commercial property has much significance for the administrators of public property portfolios in particular. It also has applications more generally for the wider real estate industry given that the advent of ‘green’ construction requires new methods for evaluating both new and existing building stocks. The research is unique in that it focuses on the accuracy of the input variables required for the model. These key variables were largely determined by market-based research and an extensive literature review, and have been fine-tuned with extensive testing. In essence, the project has considered probability-based risk analysis techniques that required market-based assessment. The projections listed in the partner engineers’ building audit reports of the four case study buildings were fed into the property evaluation model developed by the research team. The results are strongly consistent with previously existing, less robust evaluation techniques. And importantly, this model pioneers an approach for taking full account of the triple bottom line, establishing a benchmark for related research to follow. The project’s industry partners expressed a high degree of satisfaction with the project outcomes at a recent demonstration seminar. The project in its existing form has not been geared towards commercial applications but it is anticipated that QDPW and other industry partners will benefit greatly by using this tool for the performance evaluation of property assets. The project met the objectives of the original proposal as well as all the specified milestones. The project has been completed within budget and on time. This research project has achieved the objective by establishing research foci on the model structure, the key input variable identification, the drivers of the relevant property markets, the determinants of the key variables (Research Engine no.1), the examination of risk measurement, the incorporation of risk simulation exercises (Research Engine no.2), the importance of both environmental and social factors and, finally the impact of the triple bottom line measures on the asset (Research Engine no. 3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this information age, people are confronted by verbal, visual and written information. This is especially important in the health field, where information is needed to follow directions, understand prescriptions and undertake preventive behaviours. If provided in written form, much of this information may be inaccessible to people who cannot adequately read. Although poor literacy skills affect all groups in the population, older adults with fewer years of education seem to be particularly disadvantaged by an increasing reliance on written communication of health information. With older age comes a higher risk of illness and disability and a greater potential need to access the health system. As a result, poor literacy skills of older individuals may directly impact their health status. This paper explores the link between functional literacy and health, particularly for the older population, provides strategies to practitioners for the management of this problem, and suggests research initiatives in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution of linear ordinary differential equations (ODEs) is commonly taught in first year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognising what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to tables of solutions, is an important skill for students to carry with them to advanced studies in mathematics. In this study we describe a teaching and learning strategy that replaces the traditional algorithmic, transmission presentation style for solving ODEs with a constructive, discovery based approach where students employ their existing skills as a framework for constructing the solutions of first and second order linear ODEs. We elaborate on how the strategy was implemented and discuss the resulting impact on a first year undergraduate class. Finally we propose further improvements to the strategy as well as suggesting other topics which could be taught in a similar manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total cross sections for neutron scattering from nuclei, with energies ranging from 10 to 600 MeV and from many nuclei spanning the mass range 6Li to 238U, have been analyzed using a simple, three-parameter, functional form. The calculated cross sections are compared with results obtained by using microscopic (g-folding) optical potentials as well as with experimental data. The functional form reproduces those total cross sections very well. When allowance is made for Ramsauer-like effects in the scattering, the parameters of the functional form required vary smoothly with energy and target mass. They too can be represented by functions of energy and mass.