992 resultados para Function space
Resumo:
The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.
Resumo:
One of the most interesting challenge of the next years will be the Air Space Systems automation. This process will involve different aspects as the Air Traffic Management, the Aircrafts and Airport Operations and the Guidance and Navigation Systems. The use of UAS (Uninhabited Aerial System) for civil mission will be one of the most important steps in this automation process. In civil air space, Air Traffic Controllers (ATC) manage the air traffic ensuring that a minimum separation between the controlled aircrafts is always provided. For this purpose ATCs use several operative avoidance techniques like holding patterns or rerouting. The use of UAS in these context will require the definition of strategies for a common management of piloted and piloted air traffic that allow the UAS to self separate. As a first employment in civil air space we consider a UAS surveillance mission that consists in departing from a ground base, taking pictures over a set of mission targets and coming back to the same ground base. During all mission a set of piloted aircrafts fly in the same airspace and thus the UAS has to self separate using the ATC avoidance as anticipated. We consider two objective, the first consists in the minimization of the air traffic impact over the mission, the second consists in the minimization of the impact of the mission over the air traffic. A particular version of the well known Travelling Salesman Problem (TSP) called Time-Dependant-TSP has been studied to deal with traffic problems in big urban areas. Its basic idea consists in a cost of the route between two clients depending on the period of the day in which it is crossed. Our thesis supports that such idea can be applied to the air traffic too using a convenient time horizon compatible with aircrafts operations. The cost of a UAS sub-route will depend on the air traffic that it will meet starting such route in a specific moment and consequently on the avoidance maneuver that it will use to avoid that conflict. The conflict avoidance is a topic that has been hardly developed in past years using different approaches. In this thesis we purpose a new approach based on the use of ATC operative techniques that makes it possible both to model the UAS problem using a TDTSP framework both to use an Air Traffic Management perspective. Starting from this kind of mission, the problem of the UAS insertion in civil air space is formalized as the UAS Routing Problem (URP). For this reason we introduce a new structure called Conflict Graph that makes it possible to model the avoidance maneuvers and to define the arc cost function of the departing time. Two Integer Linear Programming formulations of the problem are proposed. The first is based on a TDTSP formulation that, unfortunately, is weaker then the TSP formulation. Thus a new formulation based on a TSP variation that uses specific penalty to model the holdings is proposed. Different algorithms are presented: exact algorithms, simple heuristics used as Upper Bounds on the number of time steps used, and metaheuristic algorithms as Genetic Algorithm and Simulated Annealing. Finally an air traffic scenario has been simulated using real air traffic data in order to test our algorithms. Graphic Tools have been used to represent the Milano Linate air space and its air traffic during different days. Such data have been provided by ENAV S.p.A (Italian Agency for Air Navigation Services).
Resumo:
Since 1900, the Yoruba people of South-western Nigeria have put its ethnic history at work in the construction of its identity in Nigeria. The exercise resulted in the creation of ethno-nationalist movements and the practice of ethnic politics, often expressed through violent attacks on the Nigerian State and some ethnic groups in Nigeria. Relying on mythological attachment to its traditions and subjective creation of cultural pride, the people created a sense of history that established a common interest among different Yoruba sub-groups in form of pan-Yoruba interest which forms the basis for the people’s imagination of nation. Through this, historical consciousness and socio-political space in which Yoruba people are located acted as instrumental forces employed by Yoruba political elites, both at colonial and post-colonial periods to demand for increasing access to political and economic resources in Nigeria. In form of nationalism, nationalist movements and ethnic politics continued in South-western Nigeria since 1900, yet without resulting to actual creation of an independent Yoruba State up to 2009. Through ethnographic data, the part played by history, tradition and modernity is examined in this paper. While it is concluded that ethno-nationalist movement and ethnic politics in Yoruba society are constructive agenda dated back to pre-colonial period, it continues to transform both in structure and function. Thus, Yoruba ethno-nationalist movement and ethnic politics is ambiguous, dynamic and complex, to the extent that it remains a challenge to State actions in Nigeria.
Resumo:
A successful interaction with objects in the environment requires integrating information concerning object-location with the shape, dimension and position of body parts in space. The former information is coded in a multisensory representation of the space around the body, i.e. peripersonal space (PPS), whereas the latter is enabled by an online, constantly updated, action-orientated multisensory representation of the body (BR) that is critical for action. One of the critical features of these representations is that both PPS and BR are not fixed, but they dynamically change depending on different types of experience. In a series of experiment, I studied plastic properties of PPS and BR in humans. I have developed a series of methods to measure the boundaries of PPS representation (Chapter 4), to study its neural correlates (Chapter 3) and to assess BRs. These tasks have been used to study changes in PPS and BR following tool-use (Chapter 5), multisensory stimulation (Chapter 6), amputation and prosthesis implantation (Chapter 7) or social interaction (Chapter 8). I found that changes in the function (tool-use) and the structure (amputation and prosthesis implantation) of the physical body elongate or shrink both PPS and BR. Social context and social interaction also shape PPS representation. Such high degree of plasticity suggests that our sense of body in space is not given at once, but it is constantly constructed and adapted through experience.
Resumo:
Redshift Space Distortions (RSD) are an apparent anisotropy in the distribution of galaxies due to their peculiar motion. These features are imprinted in the correlation function of galaxies, which describes how these structures distribute around each other. RSD can be represented by a distortions parameter $\beta$, which is strictly related to the growth of cosmic structures. For this reason, measurements of RSD can be exploited to give constraints on the cosmological parameters, such us for example the neutrino mass. Neutrinos are neutral subatomic particles that come with three flavours, the electron, the muon and the tau neutrino. Their mass differences can be measured in the oscillation experiments. Information on the absolute scale of neutrino mass can come from cosmology, since neutrinos leave a characteristic imprint on the large scale structure of the universe. The aim of this thesis is to provide constraints on the accuracy with which neutrino mass can be estimated when expoiting measurements of RSD. In particular we want to describe how the error on the neutrino mass estimate depends on three fundamental parameters of a galaxy redshift survey: the density of the catalogue, the bias of the sample considered and the volume observed. In doing this we make use of the BASICC Simulation from which we extract a series of dark matter halo catalogues, characterized by different value of bias, density and volume. This mock data are analysed via a Markov Chain Monte Carlo procedure, in order to estimate the neutrino mass fraction, using the software package CosmoMC, which has been conveniently modified. In this way we are able to extract a fitting formula describing our measurements, which can be used to forecast the precision reachable in future surveys like Euclid, using this kind of observations.
Resumo:
A free-space optical (FSO) laser communication system with perfect fast-tracking experiences random power fading due to atmospheric turbulence. For a FSO communication system without fast-tracking or with imperfect fast-tracking, the fading probability density function (pdf) is also affected by the pointing error. In this thesis, the overall fading pdfs of FSO communication system with pointing errors are calculated using an analytical method based on the fast-tracked on-axis and off-axis fading pdfs and the fast-tracked beam profile of a turbulence channel. The overall fading pdf is firstly studied for the FSO communication system with collimated laser beam. Large-scale numerical wave-optics simulations are performed to verify the analytically calculated fading pdf with collimated beam under various turbulence channels and pointing errors. The calculated overall fading pdfs are almost identical to the directly simulated fading pdfs. The calculated overall fading pdfs are also compared with the gamma-gamma (GG) and the log-normal (LN) fading pdf models. They fit better than both the GG and LN fading pdf models under different receiver aperture sizes in all the studied cases. Further, the analytical method is expanded to the FSO communication system with beam diverging angle case. It is shown that the gamma pdf model is still valid for the fast-tracked on-axis and off-axis fading pdfs with point-like receiver aperture when the laser beam is propagated with beam diverging angle. Large-scale numerical wave-optics simulations prove that the analytically calculated fading pdfs perfectly fit the overall fading pdfs for both focused and diverged beam cases. The influence of the fast-tracked on-axis and off-axis fading pdfs, the fast-tracked beam profile, and the pointing error on the overall fading pdf is also discussed. At last, the analytical method is compared with the previous heuristic fading pdf models proposed since 1970s. Although some of previously proposed fading pdf models provide close fit to the experiment and simulation data, these close fits only exist under particular conditions. Only analytical method shows accurate fit to the directly simulated fading pdfs under different turbulence strength, propagation distances, receiver aperture sizes and pointing errors.
Resumo:
A new approach, the four-window technique, was developed to measure optical phase-space-time-frequency tomography (OPSTFT). The four-window technique is based on balanced heterodyne detection with two local oscillator (LO) fields. This technique can provide independent control of position, momentum, time and frequency resolution. The OPSTFT is a Wigner distribution function of two independent Fourier transform pairs, phase-space and time-frequency. The OPSTFT can be applied for early disease detection.
Resumo:
Free space optical (FSO) communication links can experience extreme signal degradation due to atmospheric turbulence induced spatial and temporal irradiance fuctuations (scintillation) in the laser wavefront. In addition, turbulence can cause the laser beam centroid to wander resulting in power fading, and sometimes complete loss of the signal. Spreading of the laser beam and jitter are also artifacts of atmospheric turbulence. To accurately predict the signal fading that occurs in a laser communication system and to get a true picture of how this affects crucial performance parameters like bit error rate (BER) it is important to analyze the probability density function (PDF) of the integrated irradiance fuctuations at the receiver. In addition, it is desirable to find a theoretical distribution that accurately models these ?uctuations under all propagation conditions. The PDF of integrated irradiance fuctuations is calculated from numerical wave-optic simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to very strong. Our results show that the gamma-gamma PDF provides a good fit to the simulated data distribution for all aperture sizes studied from weak through moderate scintillation. In strong scintillation, the gamma-gamma PDF is a better fit to the distribution for point-like apertures and the lognormal PDF is a better fit for apertures the size of the atmospheric spatial coherence radius ρ0 or larger. In addition, the PDF of received power from a Gaussian laser beam, which has been adaptively compensated at the transmitter before propagation to the receiver of a FSO link in the moderate scintillation regime is investigated. The complexity of the adaptive optics (AO) system is increased in order to investigate the changes in the distribution of the received power and how this affects the BER. For the 10 km link, due to the non-reciprocal nature of the propagation path the optimal beam to transmit is unknown. These results show that a low-order level of complexity in the AO provides a better estimate for the optimal beam to transmit than a higher order for non-reciprocal paths. For the 20 km link distance it was found that, although minimal, all AO complexity levels provided an equivalent improvement in BER and that no AO complexity provided the correction needed for the optimal beam to transmit. Finally, the temporal power spectral density of received power from a FSO communication link is investigated. Simulated and experimental results for the coherence time calculated from the temporal correlation function are presented. Results for both simulation and experimental data show that the coherence time increases as the receiving aperture diameter increases. For finite apertures the coherence time increases as the communication link distance is increased. We conjecture that this is due to the increasing speckle size within the pupil plane of the receiving aperture for an increasing link distance.
Resumo:
The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA). In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden genes are excluded in cost function evaluations. Full-length solutions undergo standard genetic operations. In DSMPGA, sub-populations of fixed size design spaces are randomly initialized. Standard genetic operations are carried out for a stage of generations. A new population is then created by reproduction from all members based on their relative fitness. The resulting sub-populations have different sizes from their initial sizes. The process repeats, leading to increasing the size of sub-populations of more fit solutions. Both techniques are applied to several MGADSM problems. They have the capability to determine the number of swing-bys, the planets to swing by, launch and arrival dates, and the number of deep space maneuvers as well as their locations, magnitudes, and directions in an optimal sense. The results show that solutions obtained using the developed tools match known solutions for complex case studies. The HGGA is also used to obtain the asteroids sequence and the mission structure in the global trajectory optimization competition (GTOC) problem. As an application of GA optimization to Earth orbits, the problem of visiting a set of ground sites within a constrained time frame is solved. The J2 perturbation and zonal coverage are considered to design repeated Sun-synchronous orbits. Finally, a new set of orbits, the repeated shadow track orbits (RSTO), is introduced. The orbit parameters are optimized such that the shadow of a spacecraft on the Earth visits the same locations periodically every desired number of days.
Resumo:
Mitochondrial translation in the parasitic protozoan Trypanosoma brucei relies on imported eukaryotic-type tRNAs as well as on bacterial-type ribosomes that have the shortest known rRNAs. Here we have identified the mitochondrial translation elongation factors EF-Tu, EF-Ts, EF-G1 and release factor RF1 of trypanosomatids and show that their ablation impairs growth and oxidative phosphorylation. In vivo labelling experiments and a SILAC-based analysis of the global proteomic changes induced by EF-Tu RNAi directly link EF-Tu to mitochondrial translation. Moreover, EF-Tu RNAi reveals downregulation of many nuclear encoded subunits of cytochrome oxidase as well as of components of the bc1-complex, whereas most cytosolic ribosomal proteins were upregulated. Interestingly, T. brucei EF-Tu has a 30-amino-acid-long, highly charged subdomain, which is unique to trypanosomatids. A combination of RNAi and complementation experiments shows that this subdomain is essential for EF-Tu function, but that it can be replaced by a similar sequence found in eukaryotic EF-1a, the cytosolic counterpart of EF-Tu. A recent cryo-electron microscopy study revealed that trypanosomatid mitochondrial ribosomes have a unique intersubunit space that likely harbours the EF-Tu binding site. These findings suggest that the trypanosomatid-specific EF-Tu subdomain serves as an adaption for binding to these unusual mitochondrial ribosomes.
Resumo:
Given its origins in traditional dialectology, and given advances in our understanding of the social embedding of language variation, it is paradoxical that space should be one of the categories that has received least attention of all in variationist sociolinguistics. Until recently, space has largely been treated as an empty stage on which sociolinguistic processes are enacted. It has been unexamined, untheorized, and its role in shaping and being shaped by variation and change untested. One function of this chapter, therefore, is to assert that space makes a difference, and to begin, in a very hesitant way, to map out what a geographically informed variation analysis might need to address. It also examines variationist interactions with the related concept of mobility. It might be reasonable to think that human geographers would provide some clues on how to proceed. As we will see, they have engaged in a great deal of soul searching about the goals of their discipline, its very existence as a separate field of enquiry, and the directions it should take. Indeed there are remarkable parallels between the recent history of human geographic thought, and interest in language variation across space. Although space has been undertheorized in variation studies, a number of researchers, from the traditional dialectologists through to those interested in the dialectology of mobility and contact, have, of course, been actively engaged in research on geographical variation and language use. Their work will be contextualized here to highlight both the parallels with theory-building in human geography, but also some of the criticisms of earlier approaches which have fed through to human geography, but remain largely unquestioned in variationist practice. The chapter therefore presents a brief theoretical background to space and mobility, before exemplifying these concepts in variationist research through an examination of, for example, the spatial diffusion of linguistic innovations, the spatial configuration of linguistic boundaries and initial steps to examine the consequences of mobility for variationist research.
Resumo:
The Imager for Low Energetic Neutral Atoms test facility at the University of Bern was developed to investigate, characterize, and quantify physical processes on surfaces that are used to ionize neutral atoms before their analysis in neutral particle-sensing instruments designed for space research. The facility has contributed valuable knowledge of the interaction of ions with surfaces (e.g., fraction of ions scattered from surfaces and angular scattering distribution) and employs a novel measurement principle for the determination of secondary electron emission yields as a function of energy, angle of incidence, particle species, and sample surface for low particle energies. Only because of this test facility it was possible to successfully apply surface-science processes for the new detection technique for low-energetic neutral particles with energies below about 1 keV used in space applications. All successfully flown spectrometers for the detection of low-energetic neutrals based on the particle–surface interaction process use surfaces evaluated, tested, and calibrated in this facility. Many instruments placed on different spacecraft (e.g., Imager for Magnetopause-to-Aurora Global Exploration, Chandrayaan-1, Interstellar Boundary Explorer, etc.) have successfully used this technique.
Resumo:
Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the ‘in situ Connected Porosity’ experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the porespace, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P -wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2–2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp ) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of contaminant transport through fractured media often rely on matrix diffusion as a retardation mechanism.
Resumo:
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.
Resumo:
Although we have amassed extensive catalogues of signalling network components, our understanding of the spatiotemporal control of emergent network structures has lagged behind. Dynamic behaviour is starting to be explored throughout the genome, but analysis of spatial behaviours is still confined to individual proteins. The challenge is to reveal how cells integrate temporal and spatial information to determine specific biological functions. Key findings are the discovery of molecular signalling machines such as Ras nanoclusters, spatial activity gradients and flexible network circuitries that involve transcriptional feedback. They reveal design principles of spatiotemporal organization that are crucial for network function and cell fate decisions.