339 resultados para Friedreich ataxia
Resumo:
An early molecular response to DNA double-strand breaks (DSBs) is phosphorylation of the Ser-139 residue within the terminal SQEY motif of the histone H2AX1,2. This phosphorylation of H2AX is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)3. The phosphorylated form of H2AX, referred to as γH2AX, spreads to adjacent regions of chromatin from the site of the DSB, forming discrete foci, which are easily visualized by immunofluorecence microscopy3. Analysis and quantitation of γH2AX foci has been widely used to evaluate DSB formation and repair, particularly in response to ionizing radiation and for evaluating the efficacy of various radiation modifying compounds and cytotoxic compounds Given the exquisite specificity and sensitivity of this de novo marker of DSBs, it has provided new insights into the processes of DNA damage and repair in the context of chromatin. For example, in radiation biology the central paradigm is that the nuclear DNA is the critical target with respect to radiation sensitivity. Indeed, the general consensus in the field has largely been to view chromatin as a homogeneous template for DNA damage and repair. However, with the use of γH2AX as molecular marker of DSBs, a disparity in γ-irradiation-induced γH2AX foci formation in euchromatin and heterochromatin has been observed5-7. Recently, we used a panel of antibodies to either mono-, di- or tri- methylated histone H3 at lysine 9 (H3K9me1, H3K9me2, H3K9me3) which are epigenetic imprints of constitutive heterochromatin and transcriptional silencing and lysine 4 (H3K4me1, H3K4me2, H3K4me3), which are tightly correlated actively transcribing euchromatic regions, to investigate the spatial distribution of γH2AX following ionizing radiation8. In accordance with the prevailing ideas regarding chromatin biology, our findings indicated a close correlation between γH2AX formation and active transcription9. Here we demonstrate our immunofluorescence method for detection and quantitation of γH2AX foci in non-adherent cells, with a particular focus on co-localization with other epigenetic markers, image analysis and 3Dmodeling.
Resumo:
DNA double-strand breaks (DSBs) are particularly lethal and genotoxic lesions, that can arise either by endogenous (physiological or pathological) processes or by exogenous factors, particularly ionizing radiation and radiomimetic compounds. Phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX, is an early response to DNA double-strand breaks1. This phosphorylation event is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Overall, DSB induction results in the formation of discrete nuclear γH2AX foci which can be easily detected and quantitated by immunofluorescence microscopy2. Given the unique specificity and sensitivity of this marker, analysis of γH2AX foci has led to a wide range of applications in biomedical research, particularly in radiation biology and nuclear medicine. The quantitation of γH2AX foci has been most widely investigated in cell culture systems in the context of ionizing radiation-induced DSBs. Apart from cellular radiosensitivity, immunofluorescence based assays have also been used to evaluate the efficacy of radiation-modifying compounds. In addition, γH2AX has been used as a molecular marker to examine the efficacy of various DSB-inducing compounds and is recently being heralded as important marker of ageing and disease, particularly cancer3. Further, immunofluorescence-based methods have been adapted to suit detection and quantitation of γH2AX foci ex vivo and in vivo4,5. Here, we demonstrate a typical immunofluorescence method for detection and quantitation of γH2AX foci in mouse tissues.
Resumo:
The symptoms of psychiatric illness are diverse, as are the causes of the illnesses that cause them. Yet, regardless of the heterogeneity of cause and presentation, a great deal of symptoms can be explained by the failure of a single perceptual function – the reprocessing of ecological perception. It is a central tenet of the ecological theory of perception that we perceive opportunities to act. It has also been found that perception automatically causes actions and thoughts to occur unless this primary action pathway is inhibited. Inhibition allows perceptions to be reprocessed into more appropriate alternative actions and thoughts. Reprocessing of this kind takes place over the entire frontal lobe and it renders action optional. Choice about what action to take (if any) is the basis for the feeling of autonomy and ultimately for the sense-of-self. When thoughts and actions occur automatically (without choice) they appear to originate outside of the self, thereby providing prima facie evidence for some of the bizarre delusions that define schizophrenia such as delusional misidentification, delusions of control and Cotard’s delusion. Automatic actions and thoughts are triggered by residual stimulation whenever reprocessing is insufficient to balance automatic excitatory cues (for whatever reason). These may not be noticed if they are neutral and therefore unimportant whereas actions and thoughts with a positive bias are desirable. Responses to negative stimulus, on the other hand, are always unwelcome, because the actions that are triggered will carry the negative bias. Automatic thoughts may include spontaneous positive feelings of love and joy, but automatic negative thoughts and visualisations are experienced as hallucinations. Not only do these feel like they emerge from elsewhere but they carry a negative bias (they are most commonly critical, rude and are irrationally paranoid). Automatic positive actions may include laughter and smiling and these are welcome. Automatic behaviours that carry a negative bias, however, are unwelcome and like hallucinations, occur without a sense of choice. These include crying, stereotypies, perseveration, ataxia, utilization and imitation behaviours and catatonia.
Resumo:
Metformin is the most commonly used pharmacological therapy for type 2 diabetes. We report a genome-wide association study for glycemic response to metformin in 1,024 Scottish individuals with type 2 diabetes with replication in two cohorts including 1,783 Scottish individuals and 1,113 individuals from the UK Prospective Diabetes Study. In a combined meta-analysis, we identified a SNP, rs11212617, associated with treatment success (n = 3,920, P = 2.9 P×-9, odds ratio = 1.35, 95% CI 1.22-1.49) at a locus containing ATM, the ataxia telangiectasia mutated gene. In a rat hepatoma cell line, inhibition of ATM with KU-55933 attenuated the phosphorylation and activation of AMP-activated protein kinase in response to metformin. We conclude that ATM, a gene known to be involved in DNA repair and cell cycle control, plays a role in the effect of metformin upstream of AMP-activated protein kinase, and variation in this gene alters glycemic response to metformin. © 2011 Nature America, Inc. All rights reserved.
Resumo:
Experience suggests that the central anticholinergic action of promethazine is a major element in the toxic effects following overdosage. Physostigmine seems to be a direct antidote at doses within the safe therapeutic range; side-effects, if they become a problem, can be treated with intravenous atropine.
Resumo:
Mucopolysaccharidosis IIIB, an autosomal recessive lysosomal storage disorder of heparan sulfate caused by mutations in the α-N-acetylglucosaminidase (NAGLU) gene, was recently discovered in cattle. Clinical signs include progressive ataxia, stumbling gait, swaying and difficulty in balance and walking. These clinical signs are usually first observed at approximately 2 years of age and then develop progressively over the lifespan of the animals. Affected bulls were found to be homozygous for the missense mutation E452K (c.1354G>A). The availability of mutational analysis permits screening for the NAGLU mutation to eradicate this mutation from the cattle breeding population.
Resumo:
To determine the cause of exceptionally high mortality (41.4%) in perinatal calves on a beef cattle property 50 km south-west of Julia Creek in north-western Queensland. Investigations were based on clinical assessment of affected calves and laboratory analysis of pre- and postmortem specimens taken from 12 calves aged from 6 to 36 h of age. Associations between gross and histopathological findings and biochemical analyses conducted on serum and tissue samples were examined in relation to clinical observations. Clinical signs varied, but commonly included mild to severe ataxia, difficulty finding a teat and sucking, blindness (partial or complete, as judged by avoidance of obstacles) and depression with prominent drooping of the head. Gross and histopathological findings included herniation of the cerebellar vermis through the foramen magnum, squamous metaplasia of interlobular ducts in the parotid salivary glands and Wallerian degeneration of the optic nerves. Biochemical analysis of serum and liver samples available from four of the calves revealed low or undetectable levels of both vitamin A and vitamin E. Although vitamin E is known to have a sparing effect on vitamin A, the role (if any) played by deficiency of this vitamin was uncertain. The combination of clinical signs, postmortem findings, histopathological features and biochemical findings indicate that gestational vitamin A deficiency was highly likely to have been an important contributor to perinatal calf mortalities in this herd.
Resumo:
In Chapter 1, the literature relating to rabies virus and the rabies like lyssaviruses is reviewed. In Chapter 2, data are presented from 1170 diagnostic submissions for ABLV testing by fluorescent antibody test (Centocor FAT). All 27 non-bat submissions were ABLV-negative. Of 1143 bat accessions 74 (16%) were ABLV-positive, including 69 of 974 (7.1%) flying foxes (Pteropus spp.), 5 of 7 (71.4%) Saccolaimus flaviventris (Yellow-bellied sheathtail bats), none of 151 other microchiropteran bats, and none of 11 unidentified bats. Statistical analysis of data from 868 wild Black, Grey-headed, Little Red and Spectacled flying foxes (Pteropus alecto, P. poliocephalus, P. scapulatus, and P. conspicillatus) indicated that three factors; species, health status and age were associated with significant (p< 0.001) differences in the proportion of ABLV-positive bats. Other factors including sex, whether the bat bit a person or animal, region, year, and season submitted, were not associated with ABLV. Case data for 74 ABLV-positive bats, including the circumstances in which they were found and clinical signs, is presented. In Chapter 3, the aetiological diagnosis was investigated for 100 consecutive flying fox submissions with neurological signs. ABLV (32%), spinal and head injuries (29%), and neuro-angiostrongylosis (18%) accounted for most neurological syndromes in flying foxes. No evidence of lead poisoning was found in unwell (n=16) or healthy flying foxes (n=50). No diagnosis was reached for 16 cases, all of which were negative for ABLV by TaqMan PCR. The molecular diversity of ABLV was examined in Chapter 4 by sequencing 36 bases of the leader sequence, the entire N gene, and start of the P gene of 28 isolates from pteropid bats and 3 isolates from Yellow-bellied sheathtail (YBST) bats. Phylogenetic analysis indicated all ABLV isolates clustered together as a discrete group within the Lyssavirus genera closely related to rabies virus and European bat lyssavirus-2 isolates. The ABLV lineage consisted of two variants; one (ybst-ABLV) consisted of isolates only from YBST bats, the other (pteropid-ABLV) was common to Black, Grey-headed and Little Red flying foxes. No associations were found between the sequences and either the geographical location or year found, or individual flying fox species. In Chapter 5, 15 inocula prepared from the brains or salivary glands of naturally-infected bats were evaluated by intracerebral (IC) and footpad (FP) inoculation of Quackenbush mice in order to select and characterize a highly virulent inoculum for further use in bats (Inoculum 5). In Chapter 6, nine Grey-headed flying foxes were inoculated with 105.2 to 105.5 MICED50 of Inoculum 5 divided into four sites, left footpad, pectoral muscle, temporal muscle and muzzle. Another bat was inoculated with half this dose divided into the footpad and pectoral muscle only. Seven of 10 bats developed clinical disease of 1 to 4 days duration between PI-days 10 and 19 and were shown to be ABL-positive by FAT, HAM immunoperoxidase staining, virus isolation in mice, and TaqMan PCR. Five of the seven bats displayed overt aggression, one died during a seizure, and one showed intractable agitation, pacing, tremors, and ataxia. Viral antigen was demonstrated throughout the central and peripheral nervous systems and in the epithelial cells of the submandibular salivary glands (n=4). All affected bats had mild to moderate non-suppurative meningoencephalitis and severe ganglioneuritis. No ABLV was detected in three bats that remained well until the end of the experiment on day 82. One survivor developed a strong but transient antibody response. In Chapter 7, the relative virulence of inocula prepared from the brains and salivary glands of experimentally infected flying foxes was evaluated in mice by IC and FP inoculation and TaqMan assay. The effects in mice were correlated to the TaqMan CT value and indicated a crude association between virulence and CT value that has potential application in the selection of inocula. In Chapter 8, 36 Black and Grey-headed flying foxes were vaccinated with one (day 0) or two (+ day 28) doses of Nobivac rabies vaccine and co-vaccinated with keyhole limpet haemocyanin (KLH). All bats responded to the Nobivac vaccine with a rabies-RFFIT titer > 0.5 IU/mL that is nominally indicative of protective immunity. Plasma from bats with rabies titres >2 IU/mL had cross-neutralising ABLV titres >1:154. A specifically developed ELISA detected a strong but transient response to KLH.
Resumo:
Sodium cyanide poison is potentially a more humane method to control wild dogs than sodium fluoroacetate (1080) poison. This study quantified the clinical signs and duration of cyanide toxicosis delivered by the M-44 ejector. The device delivered a nominal 0.88 g of sodium cyanide, which caused the animal to loose the menace reflex in a mean of 43 s, and the animal was assumed to have undergone cerebral hypoxia after the last visible breath. The mean time to cerebral hypoxia was 156 s for a vertical pull and 434 s for a side pull. The difference was possibly because some cyanide may be lost in a side pull. There were three distinct phases of cyanide toxicosis: the initial phase was characterised by head shaking, panting and salivation; the immobilisation phase by incontinence, ataxia and loss of the righting reflex; and the cerebral hypoxia phase by a tetanic seizure. Clinical signs that were exhibited in more than one phase of cyanide toxicosis included retching, agonal breathing, vocalisation, vomiting, altered levels of ocular reflex, leg paddling, tonic muscular spasms, respiratory distress and muscle fasciculations of the muzzle.
Resumo:
The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.
Resumo:
Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia due to cerebellar cortical atrophy, infantile- or childhood-onset bilateral cataracts, progressive myopathy, and mild to severe mental retardation. Additional features include hypergonadotropic hypogonadism, various skeletal abnormalities, short stature, and strabismus. The neuroradiologic hallmarks are hypoplasia of both the vermis and cerebellar hemispheres. The histopathologic findings include severe cerebellar atrophy and loss of Purkinje and granule cells. The common pathologic findings in muscle biopsy are variation in muscle fiber size, atrophic fibers, fatty replacement, and rimmed vacuole formation. The presence of marked cerebellar atrophy with myopathy distinguishes MSS from another rare syndrome, the congenital cataracts, facial dysmorphism, and neuropathy syndrome (CCFDN). Previously, work by others had resulted in the identification of an MSS locus on chromosome 5q31. A subtype of MSS with myoglobinuria and neuropathy had been linked to the CCFDN locus on chromosome 18qter, at which mutations in the CTDP1 gene had been identified. We confirmed linkage to the previously identified locus on chromosome 5q31 in two Finnish families with eight affected individuals, reduced the critical region by fine-mapping, and identified SIL1 as a gene underlying MSS. We found a common homozygous founder mutation in all Finnish patients. The same mutation was also present in patient samples from Norway and Sweden. Altogether, we identified eight mutations in SIL1, including nonsense, frameshift, splice site alterations, and one missense mutation. SIL1 encodes a nucleotide exchange factor for the endoplasmic reticulum (ER) resident heat-shock protein 70 chaperone GRP78. GRP78 functions in protein synthesis and quality control of the newly synthesized polypeptides. It senses and responds to stressful cellular conditions. We showed that in mice, SIL1 and GRP78 show highly similar spatial and temporal tissue expression in developing and mature brain, eye, and muscle. Studying endogenous proteins in mouse primary hippocampal neurons, we found that SIL1 and GRP78 colocalize and that SIL1 localizes to the ER. We studied the subcellular localization of two mutant proteins, a missense mutant found in two patients and an artificial mutant lacking the ER retrieval signal, and found that both mutant proteins formed aggregates within the ER. Well in line with our findings and the clinical features of MSS, recent work by Zhao et al. showed that a truncation of SIL1 causes ataxia and cerebellar Purkinje cell loss in the naturally occurring woozy mutant mouse. Prior to Purkinje cell degeneration, the unfolded protein response is initiated and abnormal protein accumulations are present. MSS thus joins the group of protein misfolding and accumulation diseases. These findings highlight the importance of SIL1 and the role of the ER in neuronal function and survival. The results presented in this thesis provide tools for the molecular genetic diagnostics of MSS and give a basis for future studies on the molecular pathogenesis of MSS. Understanding the mechanisms behind this pleiotropic syndrome may provide insights into more common forms of ataxia, myopathy, and neurodegeneration.
Resumo:
BACKGROUND: The ATM gene encoding a putative protein kinase is mutated in ataxia-telangiectasia (A-T), an autosomal recessive disorder with a predisposition for cancer. Studies of A-T families suggest that female heterozygotes have an increased risk of breast cancer compared with noncarriers. However, neither linkage analyses nor mutation studies have provided supporting evidence for a role of ATM in breast cancer predisposition. Nevertheless, two recurrent ATM mutations, T7271G and IVS10-6T-->G, reportedly increase the risk of breast cancer. We examined these two ATM mutations in a population-based, case-control series of breast cancer families and multiple-case breast cancer families. METHODS: Five hundred twenty-five or 262 case patients with breast cancer and 381 or 68 control subjects, respectively, were genotyped for the T7271G and IVS10-6T-->G ATM mutations, as were index patients from 76 non-BRCA1/2 multiple-case breast cancer families. Linkage and penetrance were analyzed. ATM protein expression and kinase activity were analyzed in lymphoblastoid cell lines from mutation carriers. All statistical tests were two-sided. RESULTS: In case and control subjects unselected for family history of breast cancer, one case patient had the T7271G mutation, and none had the IVS10-6T-->G mutation. In three multiple-case families, one of these two mutations segregated with breast cancer. The estimated average penetrance of the mutations was 60% (95% confidence interval [CI] = 32% to 90%) to age 70 years, equivalent to a 15.7-fold (95% CI = 6.4-fold to 38.0-fold) increased relative risk compared with that of the general population. Expression and activity analyses of ATM in heterozygous cell lines indicated that both mutations are dominant negative. CONCLUSION: At least two ATM mutations are associated with a sufficiently high risk of breast cancer to be found in multiple-case breast cancer families. Full mutation analysis of the ATM gene in such families could help clarify the role of ATM in breast cancer susceptibility.
Resumo:
Three ponies continuously grazed a pasture containing an estimated 24% Indigofera spicata (wet weight basis) for 4–6 weeks in April and May 2004. They developed ataxia, paresis, depression, muscle fasciculations, dysphagia, ptyalism and halitosis. Two also developed corneal opacity. One pony recovered with supportive treatment, but the other two were euthanased and necropsied. Neuropathology was not present in either case, but both livers had periacinar and periportal lymphocytic infiltrations and hydropic degeneration of mid-zonal hepatocytes, with mild to moderate periacinar necrosis also evident in one. The I. spicata contained 2.66 mg 3-nitropropionic acid (3-NPA)/g dry matter and 1.5 mg indospicine/g dry matter. Indospicine, but not 3-NPA, was detected in serum from both of the euthanased ponies and indospicine was detected in heart, liver and muscle from the one pony in which this assay was performed. The clinical syndrome closely resembled ‘Birdsville horse disease’ caused by I. linnaei and was similar to that reported in horses poisoned by the closely related species I. hendecaphylla and to 3-NPA poisoning of other animals, including humans. 3-NPA is thought to cause this neurological syndrome. To our knowledge, this is the first authenticated report of I. spicata poisoning in grazing animals. We also report here the first published evidence that 3-NPA and indospicine exist in naturalised I. spicata in Australia and of the formation of indospicine residues in tissues of animals grazing paddocks infested with I. spicata.
Resumo:
In May 2013, the first cases of Australian bat lyssavirus infections in domestic animals were identified in Australia. Two horses (filly-H1 and gelding-H2) were infected with the Yellow-bellied sheathtail bat (YBST) variant of Australian bat lyssavirus (ABLV). The horses presented with neurological signs, pyrexia and progressing ataxia. Intra-cytoplasmic inclusion bodies (Negri bodies) were detected in some Purkinje neurons in haematoxylin and eosin (H&E) stained sections from the brain of one of the two infected horses (H2) by histological examination. A morphological diagnosis of sub-acute moderate non-suppurative, predominantly angiocentric, meningo-encephalomyelitis of viral aetiology was made. The presumptive diagnosis of ABLV infection was confirmed by the positive testing of the affected brain tissue from (H2) in a range of laboratory tests including fluorescent antibody test (FAT) and real-time PCR targeting the nucleocapsid (N) gene. Retrospective testing of the oral swab from (H1) in the real-time PCR also returned a positive result. The FAT and immunohistochemistry (IHC) revealed an abundance of ABLV antigen throughout the examined brain sections. ABLV was isolated from the brain (H2) and oral swab/saliva (H1) in the neuroblastoma cell line (MNA). Alignment of the genome sequence revealed a 97.7% identity with the YBST ABLV strain.
Resumo:
Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration.