961 resultados para Foundry resins
Resumo:
Objectives:Microleakage is a pre-stage of debonding between hard chairside relines and denture base acrylic resins. Therefore, it is important to assess them with regard to the longevity of the relined denture. This study investigated the effect of thermal cycling on the microleakage at the interface of three hard chairside reline resins and three denture base resins.Material and methods:Rectangular bars (12 mm x 3 mm x 3 mm) of Lucitone 550, Acron MC and QC 20 were made and relined with Kooliner, Tokuyama Rebase Fast II and Ufi Gel Hard, Lucitone 550, Acron MC and QC 20 resins. Specimens were divided into one control and two test groups (n = 10). In specimens of the control group, the microleakage was performed after the reline procedure. In Test Group 1, the specimens were stored for 24 h in distilled water at room temperature and in Test Group 2; the specimens were thermal cycled from 5 to 55 degrees C for 5000 cycles with a 30-s dwell time. Subsequently, all specimens were immersed in 50% silver nitrate solutions for 24 h. All specimens were sectioned longitudinally into three fractions and the lateral sections were examined (n = 20). Silver nitrate stain penetration was examined under a stereoscopic lens with x30 magnification, and the images were captured. Leica Qwin image analysis software was used to determine microleakage at the interface of the materials. Data were analysed using the Kruskal-Wallis test at a 95% level of significance.Results:For all cycles, there were no statistically significant differences between thermal cycled and non-thermal cycled groups (p > 0.05).Conclusion:It can be concluded that thermal cycling had no effect on the microleakage.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To evaluate the effect of microwave disinfection on the flexural strength and Vickers hardness of 4 autopolymerized resins (Kooliner [K], Tokuso Rebase Fast [T], Ufi Gel Hard [U], and New Truliner [N]) and 1 denture base resin (Lucitone 550 [L]). Method and Materials: For each material, 48 specimens (64 x 10 x 3.3 mm) were made and divided into 6 equal groups (n = 8). In the control group, specimens were untreated. Before testing, specimens were immersed in 200 mL of distilled water and submitted to disinfection for 1 of the following irradiation times: 1, 2, 3, 4, or 5 minutes. The irradiation procedure was performed twice. The flexural strength was determined using a testing machine MTS-810 and measurements of Vickers hardness were made on Micromet 2100. The values were submitted to ANOVA and Tukey's test (P = .05). Results: The K material showed a significant increase (P = .0010) in flexural strength following 5 minutes of disinfection compared to control specimens. The flexural strength mean values of materials T, U, and N were not significantly affected (P > .05) by disinfection. Compared to the control group, the K material showed a significant increase in hardness (P < .001) following disinfection for 3, 4, and 5 minutes. For material U, disinfection for 4 and 5 minutes produced specimens with significantly increased hardness values (P < .001) compared to the control group. For material N, disinfection for 5 minutes resulted in significantly higher hardness values (P < .001) than the control group. Conclusion: Regardless of the irradiation time, the flexural strength and hardness of the materials evaluated were not detrimentally affected by microwave disinfection. (Quintessence Int 2008;39:833-840)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Microwave energy has proved to be an effective method for disinfecting acrylic dentures. However, the effect of microwave heating on the porosity of autopolymerising denture reline resins has not been investigated.The purpose of the study was to determine the effect of microwave disinfection on the porosity of autopolymerised denture reline materials (Kooliner-K, New Truliner-NT, Tokuso Rebase Fast-TR and Ufi Gel Hard-UGH) and a conventional heat-polymerised denture base resin (Lucitone 550-L).Specimens (10 mm x 20 mm x 1 mm) were obtained from the impression surface of the palatal mucosa in a single person and divided into four groups (n = 5). The porosity was evaluated after polymerisation (C1), after two cycles of microwave disinfection (MW2), after seven cycles of microwave disinfection (MW7) and after 7 days storage in water at 37 degrees C (C2). Specimens from group MW7 were exposed to microwave disinfection daily being stored in water at 37 degrees C between exposures. All the replicas were sputter coated with gold and micrographs/digital images were taken of each replica using scanning electron microscopy at magnification x 100. The SEM micrographs were then examined using an image analyser to determine the number of pores. Comparison between materials and groups were made using Kruskal-Wallis tests.MW7 resulted in a significant increase in the number from the pores of material K, but decreased in number in reline material TR and UGH reline resin. The number of pores in materials NT and L remained unaffected following microwave disinfection.Differences in the porosity amongst the materials and for different experimental conditions were observed following microwave disinfection.
Resumo:
Objectives. The aim of this study was to evaluate the cytotoxic effect of the monomers isobutyl methacrylate (IBMA) and 1,6-hexanediol dimethacrylate (1,6-HDMA), the plasticizer di-n-butyl phthalate (DBP), and the degradation by-products methacrylic acid (MA) and benzoic acid (BA) on L929 cells. Based on previous investigations on the release of these compounds from hard chairside reline resins, a range of concentrations (mu mol/L) were selected for the cytotoxicity tests (IBMA, 5.491406.57; 1,6-HDMA, 1.2239.32; DBP, 1.12143.8; MA, 9.07581; BA, 3.19409).Methods. Cytotoxic effects were assessed using MTT and 3H-thymidine assays after the cells had been exposed to the test compounds at the given concentrations for 24h. Cytotoxicity was rated based on cell viability relative to controls (cells exposed to medium without test substances).Results. DNA synthesis activity was inhibited by all compounds. Mitochondrial dehydrogenase activity decreased in cells treated with monomers, plasticizer and MA by-product, whereas no cytotoxic effect was observed on contact with BA at the majority of concentrations tested. The ranges of suppression for 3H-thymidine assay were: IBMA, 2595%; 1,6-HDMA, 9598%; DBP, 4098%; MA, 9799%; BA, 5471%. For MTT assay, the ranges of suppression were: IBMA, 096%; 1,6-HDMA, 2689%; DBP, 1780%; MA, 5266%; BA, 027%. The 3H-thymidine assay was more sensitive than the MTT assay.Significance. This study evaluated the cytotoxicity of a wide range of concentrations of monomers (IBMA and 1,6-HDMA), plasticizer (DBP) and degradation by-products (MA and BA), including those expected to be released from hard chairside reline resins. The differences observed in the cytotoxicity of these compounds, along with other properties, may assist the dental practitioners in the selection of reline materials with improved service life performance and low risk of adverse reactions in patients who wear relined dentures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: the goal of the present study was to evaluate the microleakage on the cementum/dentin and enamel surfaces in Class 11 restorations, using different kinds of resin composite (microhybrid, flowable, and compactable). Method and materials: Forty human caries-free molars were extracted and selected. Eighty Class 11 standardized cavities were made in the cervical wall at the cementoenamel junction (CEJ) and at the mesial and distal surfaces. The teeth were divided into four groups: G1 - adhesive system + microhybrid resin composite Z100; G2 - adhesive system + compactable resin composite Prodigy Condensable; G3 - adhesive system + flowable resin composite Revolution + Z1 00 resin composite; G4 - adhesive system + Revolution fluid resin + compactable resin composite Prodigy Condensable. The adhesive system used in this study was Scotchbond Multi-Purpose Plus. The specimens were thermocycled in baths of 5degreesC and 55degreesC for 1,000 cycles and immersed in 50% silver nitrate solution. The specimens then were sectioned and evaluated on degree of dye penetration. Results: the results were evaluated using the nonparametric Kruskall-Wallis test, which showed a statistically significant difference between groups G1 and G4, G2 and G4, and G3 and G4. Conclusions: None of the materials was able to eliminate the marginal microleakage at the cervical wall; the application of a low-viscosity resin composite combined with a compactable resin composite significantly decreased the microleakage.