960 resultados para Financial market data
Resumo:
International Monetary Fund (IMF) eli Kansainvälinen valuuttarahasto perustettiin v. 1945 valvomaan 187 jäsenmaansa rahoitusjärjestelmiä ja edistämään rahoitusmarkkinoiden vakautta ja kansainvälistä kauppaa. IMF julkaisee kansainvälisiä maksutasetilastoja n. 200 maasta, ulkomaankaupan tilastotietoa, aikasarjoja v. 1948 lähtien ja valtiontalouden rahoitustilastoja sekä maakohtaisia raportteja. Painettuun kokoelmaan kuuluu vuosikertomuksia, kausijulkaisuja, tilastoja ja monografioita. Ne käsittelevät makrotaloutta, taloudellista kehitystä, rahoitusmarkkinoita, kansainvälistä taloutta ja valuuttamarkkinoita. Kokoelmassa on yhteensä n. 4342 nimekettä ja se karttuu jatkuvasti. Kokoelman vanhin julkaisu on vuodelta 1944. Suurin osa kokoelman julkaisuista on ilmestynyt v. 1995 - 2011. Sitä uudempia ei ole enää hankittu painettuina. Kokoelmaan kuuluu erilaisia vuosikirjoja pitkältä ajanjaksolta, kuten Annual report (1948 -), Annual Report on Exchange Arrangements (1990 -), Balance of payments statistics yearbook (1938 - ), Direction of trade statistics yearbook (1958 - ), Government finance statistics yearbook (1952 - ) ja International financial statistics yearbook (1991 - ). Kokoelma sisältää myös kausijulkaisuja kuten Economic review (1951 - ), IMF staff papers (1951 -) ja International financial statistics (1948 -). Kokoelmaan kuuluvat myös elektronisia julkaisuja sisältävät IMF E-Library ja AREAER -tietokannat. AREAR-tietokannassa on Annual Report on Exchange Arrangements -julkaisut sähköisessä muodossa. Tietokannassa on dataa mm. IMF:n jäsenmaiden valuutta- ja kauppajärjestelyistä. IMF E-Library, sisältää elektronisia julkaisuja sekä tilastotietokannat: International financial statistics (IFS), Balance of payments statistics (BOP), Direction of trade statistics (DOT) ja Government finance statistics (GFS). Julkaisuja on yhteensä n. 11 806. Kokoelman uudempaa osaa säilytetään Suomen Pankin kirjaston avokokoelmassa ja vanhempaa varastokokoelmassa. Painetut julkaisut ovat käytettävissä kirjastossa ja lainattavissa lukuun ottamatta tilastojulkaisuja, kausijulkaisuja ja vuosikirjoja. Elektronisia tietokantoja voi käyttää vain organisaation henkilökunta.
Resumo:
The energy reform, which is happening all over the world, is caused by the common concern of the future of the humankind in our shared planet. In order to keep the effects of the global warming inside of a certain limit, the use of fossil fuels must be reduced. The marginal costs of the renewable sources, RES are quite high, since they are new technology. In order to induce the implementation of RES to the power grid and lower the marginal costs, subsidies were developed in order to make the use of RES more profitable. From the RES perspective the current market is developed to favor conventional generation, which mainly uses fossil fuels. Intermittent generation, like wind power, is penalized in the electricity market since it is intermittent and thus diffi-cult to control. Therefore, the need of regulation and thus the regulation costs to the producer differ, depending on what kind of generation market participant owns. In this thesis it is studied if there is a way for market participant, who has wind power to use the special characteristics of electricity market Nord Pool and thus reach the gap between conventional generation and the intermittent generation only by placing bids to the market. Thus, an optimal bid is introduced, which purpose is to minimize the regulation costs and thus lower the marginal costs of wind power. In order to make real life simulations in Nord Pool, a wind power forecast model was created. The simulations were done in years 2009 and 2010 by using a real wind power data provided by Hyötytuuli, market data from Nord Pool and wind forecast data provided by Finnish Meteorological Institute. The optimal bid needs probability intervals and therefore the methodology to create probability distributions is introduced in this thesis. In the end of the thesis it is shown that the optimal bidding improves the position of wind power producer in the electricity market.
Resumo:
The importance of services in the global economy has grown steadily in the past decades and the growth of services sector’s direct investments has been increasing. Nowadays, all companies are influenced by the much changing global environment and the financial services companies are no exception. The internationalization of financial services companies is an expanding and accelerating phenomenon which has various motivations. The overall aim of this thesis is to shed light on the market entry processes of the Nordic financial services companies when they have entered the Russian market. In this study, the factors affecting Nordic banks’ market entry to Russia are presented in order to better understand what have been the main motives for market entry, what kind of processes the banks have used and what kind of challenges they have faced along the way. A case study approach was used in conducting the empirical research and it aims at investigating a specific case: Nordic banks’ entry into the Russian market. The empirical research was carried out by conducting qualitative interviews for employees involved in entry processes of the case banks. These interviews aimed at examining the Nordic banks’ motives for entering the Russian financial market. This includes reflections on the reasons why the studied banks have decided to enter Russia and what have been the motives behind these decisions. Also, the market entry processes the banks have used when they have entered the Russian market were investigated. The findings allowed comparing the related theories and different market entry modes the case banks have used. Furthermore, the market-related challenges faced by the case banks were mapped and described. In addition, the main factors related to the entry processes of the studied banks were identified and key elements of successful market entry were mapped. The findings suggest that the main motivator for banks have been to follow their customers and hence, increase the revenues and add the value to the shareholders; consequently, being a win-win-win situation to all the related parties. It was also discovered that the banks market entry processes have had resemblances but the banks have taken different paths to get where they are nowadays. As the Russian market environment differs from the one in Nordic countries, also challenges were faced by the case banks. However, the internal challenges were considered more troublesome than the external ones. As the foreign market entry process is complex as well as time and resources consuming, it is vital to understand the specifics of the target market, organizational capabilities and individuals enabling a successful entry process.
Resumo:
The paper investigates the recent financial crisis within a historical and comparative perspective having in mind that it is ultimately a confidence crisis, initially associated to a chain of high risk loans and financial innovations that spread thorough the international system culminating with impressive wealth losses. The financial market will eventually recover from the crisis but the outcome should be followed by a different and more disciplined set of international institutions. There will be a change on how we perceive the widespread liberal argument that the market is always efficient, or at least, more efficient than any State intervention, overcoming the false perception that the State is in opposition to the market. A deep financial crisis brings out a period of wealth losses and an adjustment process characterized by price corrections (commodities and equity price deflation) and real effects (recession and lower employment), and a period of turbulences and end of illusions is in place.
Resumo:
In this paper, we characterize the asymmetries of the smile through multiple leverage effects in a stochastic dynamic asset pricing framework. The dependence between price movements and future volatility is introduced through a set of latent state variables. These latent variables can capture not only the volatility risk and the interest rate risk which potentially affect option prices, but also any kind of correlation risk and jump risk. The standard financial leverage effect is produced by a cross-correlation effect between the state variables which enter into the stochastic volatility process of the stock price and the stock price process itself. However, we provide a more general framework where asymmetric implied volatility curves result from any source of instantaneous correlation between the state variables and either the return on the stock or the stochastic discount factor. In order to draw the shapes of the implied volatility curves generated by a model with latent variables, we specify an equilibrium-based stochastic discount factor with time non-separable preferences. When we calibrate this model to empirically reasonable values of the parameters, we are able to reproduce the various types of implied volatility curves inferred from option market data.
Resumo:
Cette thèse examine les effets des imperfections des marchés financiers sur la macroéconomie. Plus particulièrement, elle se penche sur les conséquences de la faillite dans les contrats financiers dans une perspective d'équilibre général dynamique. Le premier papier construit un modèle qui utilise l'avantage comparatif des banques dans la gestion des situations de détresse financière pour expliquer le choix des firmes entre les prêts bancaires et les prêts du marché financier. Le modèle réussit à expliquer pourquoi les firmes plus petites préfèrent le financement bancaire et pourquoi les prêts bancaires sont plus répandus en Europe. Le premier fait est expliqué par le lien négatif entre la valeur nette de l'entreprise et la probabilité de faire faillite. Le deuxième fait s'explique par le coût fixe d'émission de bons plus élevé en Europe. Le deuxième papier examine l'interaction entre les contraintes de financement affectant les ménages et les firmes. Une interaction positive pourrait amplifier et augmenter la persistance de l'effet d'un choc agrégé sur l'économie. Je construis un nouveau modèle qui contient des primes de financement externes pour les firmes et les ménages. Dans le modèle de base avec prix et salaires flexibles, j'obtiens une faible interaction négative entre les coûts de financement des firmes et des ménages. Le facteur clé qui explique ce résultat est l'effet du changement contre cyclique du coût de financement des ménages sur leur offre de travail et leur demande de prêts. Dans une période d'expansion, cet effet augmente les taux d'intérêt, réduit l'investissement et augmente le coût de financement des entreprises. Le troisième papier ajoute les contraintes de financement des banques dans un modèle macroéconomiques avec des prêts hypothécaires et des fluctuations dans les prix de l'immobilier. Les banques dans le modèle ne peuvent pas complètement diversifier leurs prêts, ce qui génère un lien entre les risques de faillite des ménages et des banques. Il y a deux effets contraires des cycles économiques qui affectent la prime de financement externe de la banque. Premièrement, il y a un lien positif entre le risque de faillite des banques et des emprunteurs qui contribue à rendre le coût de financement externe des banques contre cyclique. Deuxiément, le lissage de la consommation par les ménages rend la proportion de financement externe des banques pro cyclique, ce qui tend à rendre le coût de financement bancaire pro cyclique. En combinant ces deux effets, le modèle peut reproduire des profits bancaires et des ratios d'endettement bancaires pro cycliques comme dans les données, mais pour des chocs non-financiers les frictions de financement bancaire dans le modèle n'ont pas un effet quantitativement significatif sur les principales variables agrégées comme la consommation ou l'investissement.
Resumo:
Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.
Resumo:
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.
Resumo:
Cette thèse est principalement constituée de trois articles traitant des processus markoviens additifs, des processus de Lévy et d'applications en finance et en assurance. Le premier chapitre est une introduction aux processus markoviens additifs (PMA), et une présentation du problème de ruine et de notions fondamentales des mathématiques financières. Le deuxième chapitre est essentiellement l'article "Lévy Systems and the Time Value of Ruin for Markov Additive Processes" écrit en collaboration avec Manuel Morales et publié dans la revue European Actuarial Journal. Cet article étudie le problème de ruine pour un processus de risque markovien additif. Une identification de systèmes de Lévy est obtenue et utilisée pour donner une expression de l'espérance de la fonction de pénalité actualisée lorsque le PMA est un processus de Lévy avec changement de régimes. Celle-ci est une généralisation des résultats existant dans la littérature pour les processus de risque de Lévy et les processus de risque markoviens additifs avec sauts "phase-type". Le troisième chapitre contient l'article "On a Generalization of the Expected Discounted Penalty Function to Include Deficits at and Beyond Ruin" qui est soumis pour publication. Cet article présente une extension de l'espérance de la fonction de pénalité actualisée pour un processus subordinateur de risque perturbé par un mouvement brownien. Cette extension contient une série de fonctions escomptée éspérée des minima successives dus aux sauts du processus de risque après la ruine. Celle-ci a des applications importantes en gestion de risque et est utilisée pour déterminer la valeur espérée du capital d'injection actualisé. Finallement, le quatrième chapitre contient l'article "The Minimal entropy martingale measure (MEMM) for a Markov-modulated exponential Lévy model" écrit en collaboration avec Romuald Hervé Momeya et publié dans la revue Asia-Pacific Financial Market. Cet article présente de nouveaux résultats en lien avec le problème de l'incomplétude dans un marché financier où le processus de prix de l'actif risqué est décrit par un modèle exponentiel markovien additif. Ces résultats consistent à charactériser la mesure martingale satisfaisant le critère de l'entropie. Cette mesure est utilisée pour calculer le prix d'une option, ainsi que des portefeuilles de couverture dans un modèle exponentiel de Lévy avec changement de régimes.
Resumo:
Der Europäische Markt für ökologische Lebensmittel ist seit den 1990er Jahren stark gewachsen. Begünstigt wurde dies durch die Einführung der EU-Richtlinie 2092/91 zur Zertifizierung ökologischer Produkte und durch die Zahlung von Subventionen an umstellungswillige Landwirte. Diese Maßnahmen führten am Ende der 1990er Jahre für einige ökologische Produkte zu einem Überangebot auf europäischer Ebene. Die Verbrauchernachfrage stieg nicht in gleichem Maße wie das Angebot, und die Notwendigkeit für eine Verbesserung des Marktgleichgewichts wurde offensichtlich. Dieser Bedarf wurde im Jahr 2004 von der Europäischen Kommission im ersten „Europäischen Aktionsplan für ökologisch erzeugte Lebensmittel und den ökologischen Landbau“ formuliert. Als Voraussetzung für ein gleichmäßigeres Marktwachstum wird in diesem Aktionsplan die Schaffung eines transparenteren Marktes durch die Erhebung statistischer Daten über Produktion und Verbrauch ökologischer Produkte gefordert. Die Umsetzung dieses Aktionsplans ist jedoch bislang nicht befriedigend, da es auf EU-Ebene noch immer keine einheitliche Datenerfassung für den Öko-Sektor gibt. Ziel dieser Studie ist es, angemessene Methoden für die Erhebung, Verarbeitung und Analyse von Öko-Marktdaten zu finden. Geeignete Datenquellen werden identifiziert und es wird untersucht, wie die erhobenen Daten auf Plausibilität untersucht werden können. Hierzu wird ein umfangreicher Datensatz zum Öko-Markt analysiert, der im Rahmen des EU-Forschungsprojektes „Organic Marketing Initiatives and Rural Development” (OMIaRD) erhoben wurde und alle EU-15-Länder sowie Tschechien, Slowenien, Norwegen und die Schweiz abdeckt. Daten für folgende Öko-Produktgruppen werden untersucht: Getreide, Kartoffeln, Gemüse, Obst, Milch, Rindfleisch, Schaf- und Ziegenfleisch, Schweinefleisch, Geflügelfleisch und Eier. Ein zentraler Ansatz dieser Studie ist das Aufstellen von Öko-Versorgungsbilanzen, die einen zusammenfassenden Überblick von Angebot und Nachfrage der jeweiligen Produktgruppen liefern. Folgende Schlüsselvariablen werden untersucht: Öko-Produktion, Öko-Verkäufe, Öko-Verbrauch, Öko-Außenhandel, Öko-Erzeugerpreise und Öko-Verbraucherpreise. Zudem werden die Öko-Marktdaten in Relation zu den entsprechenden Zahlen für den Gesamtmarkt (öko plus konventionell) gesetzt, um die Bedeutung des Öko-Sektors auf Produkt- und Länderebene beurteilen zu können. Für die Datenerhebung werden Primär- und Sekundärforschung eingesetzt. Als Sekundärquellen werden Publikationen von Marktforschungsinstituten, Öko-Erzeugerverbänden und wissenschaftlichen Instituten ausgewertet. Empirische Daten zum Öko-Markt werden im Rahmen von umfangreichen Interviews mit Marktexperten in allen beteiligten Ländern erhoben. Die Daten werden mit Korrelations- und Regressionsanalysen untersucht, und es werden Hypothesen über vermutete Zusammenhänge zwischen Schlüsselvariablen des Öko-Marktes getestet. Die Datenbasis dieser Studie bezieht sich auf ein einzelnes Jahr und stellt damit einen Schnappschuss der Öko-Marktsituation der EU dar. Um die Marktakteure in die Lage zu versetzen, zukünftige Markttrends voraussagen zu können, wird der Aufbau eines EU-weiten Öko-Marktdaten-Erfassungssystems gefordert. Hierzu wird eine harmonisierte Datenerfassung in allen EU-Ländern gemäß einheitlicher Standards benötigt. Die Zusammenstellung der Marktdaten für den Öko-Sektor sollte kompatibel sein mit den Methoden und Variablen der bereits existierenden Eurostat-Datenbank für den gesamten Agrarmarkt (öko plus konventionell). Eine jährlich aktualisierte Öko-Markt-Datenbank würde die Transparenz des Öko-Marktes erhöhen und die zukünftige Entwicklung des Öko-Sektors erleichtern. ---------------------------
Resumo:
La búsqueda de información basada en las diferentes herramientas que el mercado ha desarrollado, ha convertido a la curva de rendimientos en una de las más utilizadas. Diferentes autores a nivel internacional se han preocupado por investigar y extraer información, teniendo en cuenta la formación de expectativas de los agentes sobre las tasas de interés, el comportamiento de diferentes variables macroeconómicas como el producto y la inflación. La evidencia encontrada es muy amplia, aunque no siempre en la misma vía. A nivel nacional, pocos autores se han preocupado por indagar sobre la curva de rendimientos como posible herramienta para predecir el comportamiento de variables macroeconómicas. Una posible explicación se relaciona con el hecho de que las bases de datos de la curva de rendimientos son muy recientes y la calidad de los datos no siempre es óptima debido al reciente desarrollo de los mercados financieros en Colombia. Sin embargo, la evidencia obtenida a través de estos estudios es valiosa.
Resumo:
Algunos de los objetivos de las organizaciones están orientados a competir a nivel internacional. Pero no es una decisión fácil de tomar, ya que es necesario tener en cuenta una serie de elementos importantes que ayuden a llevar a cabo exitosamente una actividad de comercio exterior. De lo contrario se podría cometer muchos errores que colocarían en riesgo la rentabilidad y perdurabilidad de la organización. Este estudio realiza de manera aproximada una medición de la capacidad productiva y de la potencialidad exportadora con la que cuentan las empresas colombianas que procesan y comercializan pulpas de frutas hacia Estados Unidos. El objetivo es brindar un análisis sobre el mercado de pulpa de fruta, de forma cuantitativa que involucre el grado de asimetría financiera en los sectores estratégicos y la participación de las exportaciones realizadas en 2012. La metodología usada en esta investigación, consistió en la recolección de datos específicos en cuanto a temas de exportación, producción y comercialización de pulpas de frutas. Por otro lado se auscultó información sobre datos financieros de algunas empresas y finalmente se tomó dicha información para aplicar el análisis de hacinamiento cuantitativo, que sirve para mediar la asimetría financiera a nivel sectorial, desarrollado en el método AESE “Análisis Estructural de Sectores Estratégicos” que fue desarrollado por Rivera, Hugo A y Restrepo, F profesores de la Universidad del Rosario en el año 2008.
Resumo:
La crisis que se desató en el mercado hipotecario en Estados Unidos en 2008 y que logró propagarse a lo largo de todo sistema financiero, dejó en evidencia el nivel de interconexión que actualmente existe entre las entidades del sector y sus relaciones con el sector productivo, dejando en evidencia la necesidad de identificar y caracterizar el riesgo sistémico inherente al sistema, para que de esta forma las entidades reguladoras busquen una estabilidad tanto individual, como del sistema en general. El presente documento muestra, a través de un modelo que combina el poder informativo de las redes y su adecuación a un modelo espacial auto regresivo (tipo panel), la importancia de incorporar al enfoque micro-prudencial (propuesto en Basilea II), una variable que capture el efecto de estar conectado con otras entidades, realizando así un análisis macro-prudencial (propuesto en Basilea III).
Resumo:
Las estrategias de inversión pairs trading se basan en desviaciones del precio entre pares de acciones correlacionadas y han sido ampliamente implementadas por fondos de inversión tomando posiciones largas y cortas en las acciones seleccionadas cuando surgen divergencias y obteniendo utilidad cerrando la posición al converger. Se describe un modelo de reversión a la media para analizar la dinámica que sigue el diferencial del precio entre acciones ordinarias y preferenciales de una misma empresa en el mismo mercado. La media de convergencia en el largo plazo es obtenida con un filtro de media móvil, posteriormente, los parámetros del modelo de reversión a la media se estiman mediante un filtro de Kalman bajo una formulación de estado espacio sobre las series históricas. Se realiza un backtesting a la estrategia de pairs trading algorítmico sobre el modelo propuesto indicando potenciales utilidades en mercados financieros que se observan por fuera del equilibrio. Aplicaciones de los resultados podrían mostrar oportunidades para mejorar el rendimiento de portafolios, corregir errores de valoración y sobrellevar mejor periodos de bajos retornos.
Resumo:
Many recent papers have documented periodicities in returns, return volatility, bid–ask spreads and trading volume, in both equity and foreign exchange markets. We propose and employ a new test for detecting subtle periodicities in time series data based on a signal coherence function. The technique is applied to a set of seven half-hourly exchange rate series. Overall, we find the signal coherence to be maximal at the 8-h and 12-h frequencies. Retaining only the most coherent frequencies for each series, we implement a trading rule that is based on these observed periodicities. Our results demonstrate in all cases except one that, in gross terms, the rules can generate returns that are considerably greater than those of a buy-and-hold strategy, although they cannot retain their profitability net of transactions costs. We conjecture that this methodology could constitute an important tool for financial market researchers which will enable them to detect, quantify and rank the various periodic components in financial data better.