985 resultados para Field Programmable Gate Array (FPGA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this investigation was to develop and implement a general purpose VLSI (Very Large Scale Integration) Test Module based on a FPGA (Field Programmable Gate Array) system to verify the mechanical behavior and performance of MEM sensors, with associated corrective capabilities; and to make use of the evolving System-C, a new open-source HDL (Hardware Description Language), for the design of the FPGA functional units. System-C is becoming widely accepted as a platform for modeling, simulating and implementing systems consisting of both hardware and software components. In this investigation, a Dual-Axis Accelerometer (ADXL202E) and a Temperature Sensor (TMP03) were used for the test module verification. Results of the test module measurement were analyzed for repeatability and reliability, and then compared to the sensor datasheet. Further study ideas were identified based on the study and results analysis. ASIC (Application Specific Integrated Circuit) design concepts were also being pursued.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in the efficiency of photo-voltaic systems has been the object of various studies the past few years. One possible way to increase the power extracted by a photovoltaic panel is the solar tracking, performing its movement in order to follow the sun’s path. One way to activate the tracking system is using an electric induction motor, which should have sufficient torque and low speed, ensuring tracking accuracy. With the use of voltage source inverters and logic devices that generate the appropriate switching is possible to obtain the torque and speed required for the system to operate. This paper proposes the implementation of a angular position sensor and a driver to be applied in solar tracker built at a Power Electronics and Renewable Energies Laboratory, located in UFRN. The speed variation of the motor is performed via a voltage source inverter whose PWM command to actuate their keys will be implemented in an FPGA (Field Programmable Gate Array) device and a TM4C microcontroller. A platform test with an AC induction machine of 1.5 CV was assembled for the comparative testing. The angular position sensor of the panel is implemented in a ATMega328 microcontroller coupled to an accelerometer, commanded by an Arduino prototyping board. The solar position is also calculated by the microcontroller from the geographic coordinates of the site where it was placed, and the local time and date obtained from an RTC (Real-Time Clock) device. A prototype of a solar tracker polar axis moved by a DC motor was assembled to certify the operation of the sensor and to check the tracking efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperspectral instruments have been incorporated in satellite missions, providing data of high spectral resolution of the Earth. This data can be used in remote sensing applications, such as, target detection, hazard prevention, and monitoring oil spills, among others. In most of these applications, one of the requirements of paramount importance is the ability to give real-time or near real-time response. Recently, onboard processing systems have emerged, in order to overcome the huge amount of data to transfer from the satellite to the ground station, and thus, avoiding delays between hyperspectral image acquisition and its interpretation. For this purpose, compact reconfigurable hardware modules, such as field programmable gate arrays (FPGAs) are widely used. This paper proposes a parallel FPGA-based architecture for endmember’s signature extraction. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data sets collected by the NASA’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Cuprite mining district in Nevada. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems, opening new perspectives for onboard hyperspectral image processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SD card (Secure Digital Memory Card) is widely used in portable storage medium. Currently, latest researches on SD card, are mainly SD card controller based on FPGA (Field Programmable Gate Array). Most of them are relying on API interface (Application Programming Interface), AHB bus (Advanced High performance Bus), etc. They are dedicated to the realization of ultra high speed communication between SD card and upper systems. Studies about SD card controller, really play a vital role in the field of high speed cameras and other sub-areas of expertise. This design of FPGA-based file systems and SD2.0 IP (Intellectual Property core) does not only exhibit a nice transmission rate, but also achieve the systematic management of files, while retaining a strong portability and practicality. The file system design and implementation on a SD card covers the main three IP innovation points. First, the combination and integration of file system and SD card controller, makes the overall system highly integrated and practical. The popular SD2.0 protocol is implemented for communication channels. Pure digital logic design based on VHDL (Very-High-Speed Integrated Circuit Hardware Description Language), integrates the SD card controller in hardware layer and the FAT32 file system for the entire system. Secondly, the document management system mechanism makes document processing more convenient and easy. Especially for small files in batch processing, it can ease the pressure of upper system to frequently access and process them, thereby enhancing the overall efficiency of systems. Finally, digital design ensures the superior performance. For transmission security, CRC (Cyclic Redundancy Check) algorithm is for data transmission protection. Design of each module is platform-independent of macro cells, and keeps a better portability. Custom integrated instructions and interfaces may facilitate easily to use. Finally, the actual test went through multi-platform method, Xilinx and Altera FPGA developing platforms. The timing simulation and debugging of each module was covered. Finally, Test results show that the designed FPGA-based file system IP on SD card can support SD card, TF card and Micro SD with 2.0 protocols, and the successful implementation of systematic management for stored files, and supports SD bus mode. Data read and write rates in Kingston class10 card is approximately 24.27MB/s and 16.94MB/s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the design of a network-on-chip reconfigurable pseudorandom number generation unit that can map and execute meta-heuristic algorithms in hardware. The unit can be configured to implement one of the following five linear generator algorithms: a multiplicative congruential, a mixed congruential, a standard multiple recursive, a mixed multiple recursive, and a multiply-with-carry. The generation unit can be used both as a pseudorandom and a message passing-based server, which is able to produce pseudorandom numbers on demand, sending them to the network-on-chip blocks that originate the service request. The generator architecture has been mapped to a field programmable gate array, and showed that millions of numbers in 32-, 64-, 96-, or 128-bit formats can be produced in tens of milliseconds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the fast innovation of the hardware and software technologies using rapid prototyping devices, with application in the robotics and automation, more and more it becomes necessary the development of applications based on methodologies that facilitate future modifications, updates and enhancements in the original projected system. This paper presents a conception of mobile robots using rapid prototyping, distributing the several control actions in growing levels of complexity and using resources of reconfigurable computing proposal oriented to embed systems implementation. Software and the hardware are structuralized in independents blocks, with connection through common bus. The study and applications of new structures control that permits good performance in relation to the parameter variations. This kind of controller can be tested on different platform representing the wheeled mobile robots using reprogrammable logic components (FPGA). © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes a hardware/software co-design system development, named IEEE 1451 platform, to be used in process automation. This platform intends to make easier the implementation of IEEE standards 1451.0, 1451.1, 1451.2 and 1451.5. The hardware was built using NIOS II processor resources on Alteras Cyclone II FPGA. The software was done using Java technology and C/C++ for the processors programming. This HW/SW system implements the IEEE 1451 based on a control module and supervisory software for industrial automation. © 2011 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial Neural Networks are widely used in various applications in engineering, as such solutions of nonlinear problems. The implementation of this technique in reconfigurable devices is a great challenge to researchers by several factors, such as floating point precision, nonlinear activation function, performance and area used in FPGA. The contribution of this work is the approximation of a nonlinear function used in ANN, the popular hyperbolic tangent activation function. The system architecture is composed of several scenarios that provide a tradeoff of performance, precision and area used in FPGA. The results are compared in different scenarios and with current literature on error analysis, area and system performance. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupolemass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La electrónica digital moderna presenta un desafío a los diseñadores de sistemas de potencia. El creciente alto rendimiento de microprocesadores, FPGAs y ASICs necesitan sistemas de alimentación que cumplan con requirimientos dinámicos y estáticos muy estrictos. Específicamente, estas alimentaciones son convertidores DC-DC de baja tensión y alta corriente que necesitan ser diseñados para tener un pequeño rizado de tensión y una pequeña desviación de tensión de salida bajo transitorios de carga de una alta pendiente. Además, dependiendo de la aplicación, se necesita cumplir con otros requerimientos tal y como proveer a la carga con ”Escalado dinámico de tensión”, donde el convertidor necesitar cambiar su tensión de salida tan rápidamente posible sin sobreoscilaciones, o ”Posicionado Adaptativo de la Tensión” donde la tensión de salida se reduce ligeramente cuanto más grande sea la potencia de salida. Por supuesto, desde el punto de vista de la industria, las figuras de mérito de estos convertidores son el coste, la eficiencia y el tamaño/peso. Idealmente, la industria necesita un convertidor que es más barato, más eficiente, más pequeño y que aún así cumpla con los requerimienos dinámicos de la aplicación. En este contexto, varios enfoques para mejorar la figuras de mérito de estos convertidores se han seguido por la industria y la academia tales como mejorar la topología del convertidor, mejorar la tecnología de semiconducores y mejorar el control. En efecto, el control es una parte fundamental en estas aplicaciones ya que un control muy rápido hace que sea más fácil que una determinada topología cumpla con los estrictos requerimientos dinámicos y, consecuentemente, le da al diseñador un margen de libertar más amplio para mejorar el coste, la eficiencia y/o el tamaño del sistema de potencia. En esta tesis, se investiga cómo diseñar e implementar controles muy rápidos para el convertidor tipo Buck. En esta tesis se demuestra que medir la tensión de salida es todo lo que se necesita para lograr una respuesta casi óptima y se propone una guía de diseño unificada para controles que sólo miden la tensión de salida Luego, para asegurar robustez en controles muy rápidos, se proponen un modelado y un análisis de estabilidad muy precisos de convertidores DC-DC que tienen en cuenta circuitería para sensado y elementos parásitos críticos. También, usando este modelado, se propone una algoritmo de optimización que tiene en cuenta las tolerancias de los componentes y sensados distorsionados. Us ando este algoritmo, se comparan controles muy rápidos del estado del arte y su capacidad para lograr una rápida respuesta dinámica se posiciona según el condensador de salida utilizado. Además, se propone una técnica para mejorar la respuesta dinámica de los controladores. Todas las propuestas se han corroborado por extensas simulaciones y prototipos experimentales. Con todo, esta tesis sirve como una metodología para ingenieros para diseñar e implementar controles rápidos y robustos de convertidores tipo Buck. ABSTRACT Modern digital electronics present a challenge to designers of power systems. The increasingly high-performance of microprocessors, FPGAs (Field Programmable Gate Array) and ASICs (Application-Specific Integrated Circuit) require power supplies to comply with very demanding static and dynamic requirements. Specifically, these power supplies are low-voltage/high-current DC-DC converters that need to be designed to exhibit low voltage ripple and low voltage deviation under high slew-rate load transients. Additionally, depending on the application, other requirements need to be met such as to provide to the load ”Dynamic Voltage Scaling” (DVS), where the converter needs to change the output voltage as fast as possible without underdamping, or ”Adaptive Voltage Positioning” (AVP) where the output voltage is slightly reduced the greater the output power. Of course, from the point of view of the industry, the figures of merit of these converters are the cost, efficiency and size/weight. Ideally, the industry needs a converter that is cheaper, more efficient, smaller and that can still meet the dynamic requirements of the application. In this context, several approaches to improve the figures of merit of these power supplies are followed in the industry and academia such as improving the topology of the converter, improving the semiconductor technology and improving the control. Indeed, the control is a fundamental part in these applications as a very fast control makes it easier for the topology to comply with the strict dynamic requirements and, consequently, gives the designer a larger margin of freedom to improve the cost, efficiency and/or size of the power supply. In this thesis, how to design and implement very fast controls for the Buck converter is investigated. This thesis proves that sensing the output voltage is all that is needed to achieve an almost time-optimal response and a unified design guideline for controls that only sense the output voltage is proposed. Then, in order to assure robustness in very fast controls, a very accurate modeling and stability analysis of DC-DC converters is proposed that takes into account sensing networks and critical parasitic elements. Also, using this modeling approach, an optimization algorithm that takes into account tolerances of components and distorted measurements is proposed. With the use of the algorithm, very fast analog controls of the state-of-the-art are compared and their capabilities to achieve a fast dynamic response are positioned de pending on the output capacitor. Additionally, a technique to improve the dynamic response of controllers is also proposed. All the proposals are corroborated by extensive simulations and experimental prototypes. Overall, this thesis serves as a methodology for engineers to design and implement fast and robust controls for Buck-type converters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the critical properties of the four-state commutative random permutation glassy Potts model in three and four dimensions by means of Monte Carlo simulations and a finite-size scaling analysis. By using a field programmable gate array, we have been able to thermalize a large number of samples of systems with large volume. This has allowed us to observe a spin-glass ordered phase in d=4 and to study the critical properties of the transition. In d=3, our results are consistent with the presence of a Kosterlitz-Thouless transition, but also with different scenarios: transient effects due to a value of the lower critical dimension slightly below 3 could be very important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis described the research carried out on the development of a novel hardwired tactile sensing system tailored for the application of a next generation of surgical robotic and clinical devices, namely a steerable endoscope with tactile feedback, and a surface plate for patient posture and balance. Two case studies are examined. The first is a one-dimensional sensor for the steerable endoscope retrieving shape and ‘touch’ information. The second is a two-dimensional surface which interprets the three-dimensional motion of a contacting moving load. This research can be used to retrieve information from a distributive tactile sensing surface of a different configuration, and can interpret dynamic and static disturbances. This novel approach to sensing has the potential to discriminate contact and palpation in minimal invasive surgery (MIS) tools, and posture and balance in patients. The hardwired technology uses an embedded system based on Field Programmable Gate Arrays (FPGA) as the platform to perform the sensory signal processing part in real time. High speed robust operation is an advantage from this system leading to versatile application involving dynamic real time interpretation as described in this research. In this research the sensory signal processing uses neural networks to derive information from input pattern from the contacting surface. Three neural network architectures namely single, multiple and cascaded were introduced in an attempt to find the optimum solution for discrimination of the contacting outputs. These architectures were modelled and implemented into the FPGA. With the recent introduction of modern digital design flows and synthesis tools that essentially take a high-level sensory processing behaviour specification for a design, fast prototyping of the neural network function can be achieved easily. This thesis outlines the challenge of the implementations and verifications of the performances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental method for characterizing the time-resolved phase noise of a fast switching tunable laser is discussed. The method experimentally determines a complementary cumulative distribution function of the laser's differential phase as a function of time after a switching event. A time resolved bit error rate of differential quadrature phase shift keying formatted data, calculated using the phase noise measurements, was fitted to an experimental time-resolved bit error rate measurement using a field programmable gate array, finding a good agreement between the time-resolved bit error rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.