995 resultados para Fibrin Tissue Adhesive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular Ehlers-Danlos syndrome is a heritable disease of connective tissue caused by mutations in COL3A1, conferring a tissue deficiency of type III collagen. Cutaneous wounds heal poorly in these patients, and they are susceptible to spontaneous and catastrophic rupture of expansible hollow organs like the gut, uterus, and medium-sized to large arteries, which leads to premature death. Although the predisposition for organ rupture is often attributed to inherent tissue fragility, investigation of arteries from a haploinsufficient Col3a1 mouse model (Col3a1+/-) demonstrates that mutant arteries withstand even supraphysiologic pressures comparably to wild-type vessels. We hypothesize that injury that elicits occlusive thrombi instead unmasks defective thrombus resolution resulting from impaired production of type III collagen, which causes deranged remodeling of matrix, persistent inflammation, and dysregulated behavior by resident myofibroblasts, culminating in the development of penetrating neovascular channels that disrupt the mechanical integrity of the arterial wall. Vascular injury and thrombus formation following ligation of the carotid artery reveals an abnormal persistence and elevated burden of occlusive thrombi at 21 post-operative days in vessels from Col3a1+/- mice, as opposed to near complete resolution and formation of a patent and mature neointima in wild-type mice. At only 14 days, both groups harbor comparable burdens of resolving thrombi, but wild-type mice increase production of type III collagen in actively resolving tissues, while mutant mice do not. Rather, thrombi in mutant mice contain higher burdens of macrophages and proliferative myofibroblasts, which persist through 21 days while wild-type thrombi, inflammatory cells, and proliferation all regress. At the same time that increased macrophage burdens were observed at 14 and 21 days post ligation, the medial layer of mutant arterial walls concurrently harbored a significantly higher incidence of penetrating neovessels compared with those in wild-type mice. To assess whether limited type III collagen production alters myofibroblast behavior, fibroblasts from vEDS patients with COL3A1 missense mutations were seeded into three-dimensional fibrin gel constructs and stimulated with transforming growth factor-β1 to initiate myofibroblast differentiation. Although early signaling events occur similarly in all cell lines, late extracellular matrix- and mechanically-regulated events like transcriptional upregulation of type I and type III collagen secretion are delayed in mutant cultures, while transcription of genes encoding intracellular contractile machinery is increased. Sophisticated imaging of collagen synthesized de novo by resident myofibroblasts visualizes complex matrix reorganization by control cells but only meager remodeling by COL3A1 mutant cells, concordant with their compensatory contraction to maintain tension in the matrix. Finally, administration of immunosuppressive rapamycin to mice following carotid ligation sufficiently halts the initial inflammatory phase of thrombus resolution and fully prevents both myofibroblast migration into the thrombus and the differential development of neovessels between mutant and wild-type mice, suggesting that pathological defects in mutant arteries develop secondarily to myofibroblast dysfunction and chronic inflammatory stimulation, rather than as a manifestation of tissue fragility. Together these data establish evidence that pathological defects in the vessel wall architecture develop in mutant arteries as sequelae to abnormal healing and remodeling responses activated by arterial injury. Thus, these data support the hypothesis that events threatening the integrity of type III collagen-deficient vessels develop not as a result of inherent tissue weakness and fragility at baseline but instead as an episodic byproduct of abnormally persistent granulation tissue and fibroproliferative intravascular remodeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tenascin-C is an adhesion-modulating matrix glycoprotein that has multiple effects on cell behavior. Tenascin-C transcripts are expressed in motile cells and at sites of tissue modeling during development, and alternative splicing generates variants that encode different numbers of fibronectin type III repeats. We have examined the in vivo expression and cell adhesive properties of two full-length recombinant tenascin-C proteins: TN-190, which contains the eight constant fibronectin type III repeats, and TN-ADC, which contains the additional AD2, AD1, and C repeats. In situ hybridization with probes specific for the AD2, AD1, and C repeats shows that these splice variants are expressed at sites of active tissue modeling and fibronectin expression in the developing avian feather bud and sternum. Transcripts incorporating the AD2, AD1, and C repeats are present in embryonic day 10 wing bud but not in embryonic day 10 lung. By using a panel of nine cell lines in attachment assays, we have found that C2C12, G8, and S27 myoblastic cells undergo concentration-dependent adhesion to both variants, organize actin microspikes that contain the actin-bundling protein fascin, and do not assemble focal contacts. On a molar basis, TN-ADC is more active than TN-190 in promoting cell attachment and irregular cell spreading. The addition of either TN-190 or TN-ADC in solution to C2C12, COS-7, or MG-63 cells adherent on fibronectin decreases cell attachment and results in decreased organization of actin microfilament bundles, with formation of cortical membrane ruffles and retention of residual points of substratum contact that contain filamentous actin and fascin. These data establish a biochemical similarity in the processes of cell adhesion to tenascin-C and thrombospondin-1, also an “antiadhesive” matrix component, and also demonstrate that both the adhesive and adhesion-modulating properties of tenascin-C involve similar biochemical events in the cortical cytoskeleton. In addition to these generic properties, TN-ADC is less active in adhesion modulation than TN-190. The coordinated expression of different tenascin-C transcripts during development may, therefore, provide appropriate microenvironments for regulated changes in cell shape, adhesion, and movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibroblast growth factor-2 (FGF-2) immobilized on non-tissue culture plastic promotes adhesion and spreading of bovine and human endothelial cells that are inhibited by anti-FGF-2 antibody. Heat-inactivated FGF-2 retains its cell-adhesive activity despite its incapacity to bind to tyrosine-kinase FGF receptors or to cell-surface heparan sulfate proteoglycans. Recombinant glutathione-S-transferase-FGF-2 chimeras and synthetic FGF-2 fragments identify two cell-adhesive domains in FGF-2 corresponding to amino acid sequences 38–61 and 82–101. Both regions are distinct from the FGF-receptor-binding domain of FGF-2 and contain a DGR sequence that is the inverse of the RGD cell-recognition sequence. Calcium deprivation, RGD-containing eptapeptides, soluble vitronectin (VN), but not fibronectin (FN), inhibit cell adhesion to FGF-2. Conversely, soluble FGF-2 prevents cell adhesion to VN but not FN, thus implicating VN receptor in the cell-adhesive activity of FGF-2. Accordingly, monoclonal and polyclonal anti-αvβ3 antibodies prevent cell adhesion to FGF-2. Also, purified human αvβ3 binds to immobilized FGF-2 in a cation-dependent manner, and this interaction is competed by soluble VN but not by soluble FN. Finally, anti-αvβ3 monoclonal and polyclonal antibodies specifically inhibit mitogenesis and urokinase-type plasminogen activator (uPA) up-regulation induced by free FGF-2 in endothelial cells adherent to tissue culture plastic. These data demonstrate that FGF-2 interacts with αvβ3 integrin and that this interaction mediates the capacity of the angiogenic growth factor to induce cell adhesion, mitogenesis, and uPA up-regulation in endothelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arterial thrombosis is considered to arise from the interaction of tissue factor (TF) in the vascular wall with platelets and coagulation factors in circulating blood. According to this paradigm, coagulation is initiated after a vessel is damaged and blood is exposed to vessel-wall TF. We have examined thrombus formation on pig arterial media (which contains no stainable TF) and on collagen-coated glass slides (which are devoid of TF) exposed to flowing native human blood. In both systems the thrombi that formed during a 5-min perfusion stained intensely for TF, much of which was not associated with cells. Antibodies against TF caused ≈70% reduction in the amount of thrombus formed on the pig arterial media and also reduced thrombi on the collagen-coated glass slides. TF deposited on the slides was active, as there was abundant fibrin in the thrombi. Factor VIIai, a potent inhibitor of TF, essentially abolished fibrin production and markedly reduced the mass of the thrombi. Immunoelectron microscopy revealed TF-positive membrane vesicles that we frequently observed in large clusters near the surface of platelets. TF, measured by factor Xa formation, was extracted from whole blood and plasma of healthy subjects. By using immunostaining, TF-containing neutrophils and monocytes were identified in peripheral blood; our data raise the possibility that leukocytes are the main source of blood TF. We suggest that blood-borne TF is inherently thrombogenic and may be involved in thrombus propagation at the site of vascular injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Around 80% of people are affected by low back pain at least once in their life, often caused by trauma provoking intervertebral disc (IVD) herniation and/or IVD degeneration. Apart from some promising approaches for nucleus pulposus repair, so far no treatment or repair is available for the outer fibrous tissue, annulus fibrosus (AF). We aimed for sealing and repairing an AF injury in a bovine IVD organ culture model in vitro over 14 days under different loading conditions. For this purpose, a silk fleece composite from Bombyx mori silk was combined with genipin-enhanced fibrin hydrogel [1]. METHODS: Bovine IVDs of 12-17 months old animals were isolated by first removing all surrounding tissue, followed by cutting out the IVDs [2]. Culturing of discs occurred in high glucose Dulbecco's Modified Eagle Medium (HG-DMEM) supplemented with 5% serum as previously described. On the next day, injury was induced using a 2mm biopsy punch (Polymed, Switzerland). The formed cavity was filled with (0.4%) genipin-enhanced human based fibrin hydrogel (35- 55mg/mL human fibrinogen, Baxter, Austria) and sealed with a silk fleece-membrane composite (Spintec Engineering, Germany). Different culture conditions were applied: free swelling, static diurnal load of 0.2MPa for 8h/d and complex loading at 0.2MPa compression combined with ± 2° torsion at 0.2Hz for 8h/d. Complex loading was applied by a custom built 2 degree of freedom bioreactor [3]. After 14 days of culture cell activity was determined with resazurin assay. Additionally, glycosaminoglycan (dimethyl-methylene blue), DNA (Hoechst) and collagen content (hydroxy-proline) were determined. Finally, real-time qPCR of major IVD marker genes was performed. RESULTS: The silk seal closing the injury site could successfully withstand the forces of all three loading conditions with no misplacement over the two weeks’ culture. Nevertheless, disc height of the repaired discs did not significantly differ from the injured group. The disc phenotype could be maintained as demonstrated by biochemical analysis of gene expression, cell activity, DNA-, collagen- and GAG content. The silk itself was evaluated to be highly biocompatible for hMSC, as revealed by cytotoxicity assays. DISCUSSION & CONCLUSIONS: The silk can be considered a highly-elastic and biocompatible material for AF closure and the genipin-enhanced fibrin hydrogel has also good biomechanical properties. However, the cyto-compatibility of genipin seems rather poor and other hydrogels and/or cross-linkers should be looked into. REFERENCES: 1 C.C. Guterl et al. (2014) Characterization of Mechanics and Cytocompatibility of Fibrin Genipin Annulus Fibrosus Sealant with the Addition of Cell Adhesion Molecules, Tissue Eng Part A 2 S.C. Chan, B. Gantenbein-Ritter (2012) Preparation of intact bovine tail intervertebral discs for organ culture, J Vis Exp 3 B Gantenbein et al. (2015) Organ Culture Bioreactors - Platforms to Study Human Intervertebral Disc Degeneration and Regenerative Therapy, Curr Stem Cell Res Ther [epub ahead of print] ACKNOWLEDGEMENTS: This project is supported by the Gebert Rüf Stiftung project # GRS-028/13.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monogeneans Decacotyle lymmae and D. tetrakordyle (Monocotylidae: Decacotylinae), from gills of the dasyatid stingrays Taeniura lymma and Pastinachus sephen, respectively, have a single aperture for adhesive secretion on each side of the anterior ventrolateral region. Rod-shaped bodies (S1) and electron-dense spherical secretion (S2) exit through specialised ducts opening adjacent to one another within these apertures. The S1 bodies are 230 +/- 11 nm wide and greater than or equal to4 mum long in D. lymmae and 240 +/- 9 nm wide and greater than or equal to3.3 mum long in D. tetrakordyle. The S2 bodies have a diameter of 88 +/- 7 nm in D. lymmae and 65 +/- 6 nm in D. tetrakordyle. The apertures are unusual in being extremely small (internal diameter, 3-5 mum). Each aperture has a slit-like surface opening as small as 160 nm wide, surrounded by muscle fibres indicating that they may be opened and closed. The aperture is also surrounded and underlain by muscle fibres that may aid in secretion from, or even eversion of, the tissue within the aperture. Sensilla/cilia are also found within the apertures. Additional secretions from anteromedian and anterolateral glands (body glands), each containing granular secretions, occur in profusion and exit anteriorly and posteriorly to the position of the apertures, through duct openings in the general body tegument. These granular secretions do not appear to be associated with anterior adhesion. Both species show similarities in aperture, underlying tissue, sense organ, and secretion detail, in accordance with findings from other monogenean genera, and which supports the importance of such data for phylogenetic studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anterior adhesive mechanism was studied for Merizocotyle icopae (Monogenea: Monocotylidae). Adult anterior apertures can open and close. In addition, duct endings terminating within the apertures are everted or retracted depending on the stage of attachment. Adhesive in adults is synthesized from all 3 secretory types (rod-shaped, small and large spheroidal bodies) found within anterior apertures. All exit together and undergo mixing to produce the adhesive matrix, a process that depletes duct contents. A greater number of ducts carrying rod-shaped bodies is depleted than ducts containing spheroidal bodies which changes the ratio of secretory types present on detachment. Detachment involves elongation of duct endings and secretion of additional matrix as the worm pulls away from the substrate. The change in secretory type ratio putatively modifies the properties of the secreted matrix enabling detachment. Only after detachment do ducts refill. During attachment, individual secretory bodies undergo morphological changes. The larval and adult adhesive matrix differs. Anterior adhesive in oncomiracidia does not show fibres with banding whereas banded fibres comprise a large part of adult adhesive. The data Suggest that this is the result of adult spheroidal secretions modifying the way in which the adult adhesive matrix forms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem cells, either from embryonic or adult sources, have demonstrated the potential to differentiate into a wide range of tissues depending on culture conditions. This makes them prime candidates for use in tissue engineering applications. Current technology allows us to process biocompatible and biodegradable polymers into three-dimensional (3D) configurations, either as solid porous scaffolds or hydrogels, with controlled macro and/or micro spatial geometry and surface chemistry. Such control provides us with the ability to present highly controlled microenvironments to a chosen cell type. However, the precise microenvironments required for optimal expansion and/or differentiation of stem cells are only now being elucidated, and hence the controlled use of stem cells in tissue engineering remains a very young field. We present here a brief review of the current literature detailing interactions between stem cells and 3D scaffolds of varying morphology and chemical properties, concluding with remaining challenges for those interested in tissue engineering using tailored scaffolds and stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In-vitro experimentation was performed on porcine and human blood to determine their comparative responsiveness to a novel fibrinolytic inhibitor and thereby assess whether the pig is a suitable animal model for subsequent in-vivo testing of this inhibitor. Thromboelastography showed the clots formed from porcine whole blood to be highly resistant to tissue plasminogen activator (t-PA)-catalyzed lysis, and this communication offers the resistance of porcine plasminogen to activation by t-PA as an explanation. Porcine blood containing 100 and 1500 IU/ml added t-PA lysed very slowly, having LY30 values of 1.9 +/- 1.4 and 2.9 +/- 1.9%, respectively. In contrast, the LY30 values for the human clots containing 100 and 1500 IU/ml t-PA were 77.1 +/- 6.3 and 93.3 +/- 1.3%, respectively. Moreover, purified porcine plasminogen was activated very slowly by added t-PA in the presence of both human and porcine fibrin. Activation of plasminogen by the endogenous activators, as measured by the euglobulin clot lysis time, was greatly prolonged for the pig (22 +/- 3 h) compared with the human (3.5 +/- 1.5 h). These results suggest caution in using the pig as an experimental model when studying the effects of various agents on fibrinolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specific association of tissue transglutaminase (tTG) with matrix fibronectin (FN) results in the formation of an extracellular complex (tTG-FN) with distinct adhesive and pro-survival characteristics. tTG-FN supports RGD-independent cell adhesion of different cell types and the formation of distinctive RhoA-dependent focal adhesions following inhibition of integrin function by competitive RGD peptides and function blocking anti-integrin antibodies alpha5beta1. Association of tTG with its binding site on the 70-kDa amino-terminal FN fragment does not support this cell adhesion process, which seems to involve the entire FN molecule. RGD-independent cell adhesion to tTG-FN does not require transamidating activity, is mediated by the binding of tTG to cell-surface heparan sulfate chains, is dependent on the function of protein kinase Calpha, and leads to activation of the cell survival focal adhesion kinase. The tTG-FN complex can maintain cell viability of tTG-null mouse dermal fibroblasts when apoptosis is induced by inhibition of RGD-dependent adhesion (anoikis), suggesting an extracellular survival role for tTG. We propose a novel RGD-independent cell adhesion mechanism that promotes cell survival when the anti-apoptotic role mediated by RGD-dependent integrin function is reduced as in tissue injury, which is consistent with the externalization and binding of tTG to fibronectin following cell damage/stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the nature of biomaterial interactions with compromised host tissue sites. Both ocular and dermal tissues can be wounded, following injury, disease or surgery, and consequently require the use of a biomaterial. Clear analogies exist between the cornea/tear film/contact lens and the dermal wound bed/wound fluid/skin adhesive wound dressing. The work described in this thesis builds upon established biochemistry to examine specific aspects of the interaction of biomaterials with compromised ocular and dermal tissue sites, with a particular focus on the role of vitronectin. Vitronectin is a prominent cell adhesion glycoprotein present in both tear fluid and wound fluid, and has a role in the regulation and upregulation of plasmin. The interaction of contact lenses with the cornea was assessed by a novel on-lens cell-based vitronectin assay technique. Vitronectin mapping showed that vitronectin-mediated cell adhesion to contact lens surfaces was due to the contact lens-corneal mechanical interaction rather than deposition out of the tear film. This deposition is associated predominantly with the peripheral region of the posterior contact lens surface. The locus of vitronectin deposition on the contact lens surface, which is affected by material modulus, is potentially an important factor in the generation of plasmin in the posterior tear film. Use of the vitronectin mapping technique on ex vivo bandage contact lenses revealed greater vitronectin-mediated cell adhesion to the contact lens surfaces in comparison to lenses worn in the healthy eye. The results suggest that vitronectin is more readily deposited from the impaired corneal tissue bed than the intact healthy tissue bed. Significantly, subjects with a deficient tear film were found to deposit high vitronectin-mediated cell adhesion levels to the BCL surface, thus highlighting the influence of the contact lens-tissue interaction upon deposition. Biomimetic principles imply that adhesive materials for wound applications, including hydrogels and hydrocolloids, should closely match the surface energy parameters of skin. The surface properties of hydrocolloid adhesives were found to be easily modified by contact with siliconised plastic release liners. In contrast, paper release liners did not significantly affect the adhesive surface properties. In order to characterise such materials in the actual wound environment, which is an extremely challenging task, preliminary considerations for the design of an artificial wound fluid model from an animal serum base were addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.