958 resultados para FULLY STABILIZED ZIRCONIA
Resumo:
In this paper, space adaptivity is introduced to control the error in the numerical solution of hyperbolic systems of conservation laws. The reference numerical scheme is a new version of the discontinuous Galerkin method, which uses an implicit diffusive term in the direction of the streamlines, for stability purposes. The decision whether to refine or to unrefine the grid in a certain location is taken according to the magnitude of wavelet coefficients, which are indicators of local smoothness of the numerical solution. Numerical solutions of the nonlinear Euler equations illustrate the efficiency of the method. © Springer 2005.
Resumo:
The aim of this study was to verify whether screw abutment lubrication can generate higher preload values compared to non-lubricated screws, a titanium abutment was screwed onto an implant analog and scanned with the Procera System to generate 20 zirconia abutments. MKIII Brånemark implants were clamped to a precision torque device, and the abutments were distributed in dry and wet groups with 10 specimens each. In the wet groups, the inner threads of the implants were filled with artificial saliva. All abutments were fastened with a Torqtite screw under 32 Ncm. Ten detorque measurements were performed per group pushing the reverse button of the Torque controller soon after screw tightening with values registered. The mean detorque values were calculated and compared by a Student's t test (?=0.05). The wet condition presented significantly higher mean detorque than the dry condition (31.5 ± 1.2 versus 27.5 ± 1.5 Ncm, respectively; p=0.0000024). In conclusion, there was always a loss in the initial torque values when the removal torque was measured under both conditions. The wet condition presented higher mean torque than the dry condition. Better preload values were established in the wet group, suggesting that the abutment screw must be lubricated in saliva to avoid further loosening.
Resumo:
β-Casein and sodium caseinate stabilized emulsions were produced and had their rheological properties investigated as a function of the nature of the oil phase, ionic strength and pH. Oil phases of distinct structural characteristics, namely decane and vegetable oil of high triglyceride content, were assayed. The former was much more effectively emulsified than the latter. Effects of pH and ionic strength were minor. Emulsion rheological properties were strikingly distinct in each case, with viscoelastic, solid-like structures being formed with decane (G' >> G"), differently from what is observed for samples containing triglycerides as the oil phase, in which viscoelasticity was not even apparent. The relevance of the spatial features of the oil phase structure in the development of the emulsion viscoelastic character is discussed. Factors responding for the system distinct behaviour possibly reside at the emulsion droplet interface, unapproachable by optical microscopy, rather than on aspects related to particle size or shape.
Resumo:
Emulsões estabilizadas por 'beta'-caseína e sódio caseinato tiveram suas propriedades reológicas investigadas em função da natureza da fase oleosa, da força iônica e do pH. Fases oleosas de características estruturais distintas, a saber, decano e óleos vegetais de alto teor triglicerídico, foram ensaiadas. A emulsificação dos sistemas contendo decano foi significativamente mais efetiva do que aquela das amostras contendo triglicérides. Efeitos de pH e força iônica mostraram-se relativamente pouco importantes sobre a capacidade emulsificante da proteína. As propriedades reológicas foram marcadamente distintas em cada caso, com estruturas de caráter sólido (G' G") sendo produzidas com decano, diferentemente do que foi observado para amostras contendo triglicérides, nas quais a viscoelasticidade não foi nem mesmo aparente. A relevância de aspectos espaciais da estrutura da fase oleosa no desenvolvimento do caráter viscoelástico é discutida. Propõe-se que os fatores responsáveis pelo comportamento distinto observado residam possivelmente na interface gotícula/meio dispersante, inacessível por microscopia óptica, e guardam pouca relação com tamanho ou forma da gotícula.
Resumo:
Synchronization plays an important role in telecommunication systems, integrated circuits, and automation systems. Formerly, the masterslave synchronization strategy was used in the great majority of cases due to its reliability and simplicity. Recently, with the wireless networks development, and with the increase of the operation frequency of integrated circuits, the decentralized clock distribution strategies are gaining importance. Consequently, fully connected clock distribution systems with nodes composed of phase-locked loops (PLLs) appear as a convenient engineering solution. In this work, the stability of the synchronous state of these networks is studied in two relevant situations: when the node filters are first-order lag-lead low-pass or when the node filters are second-order low-pass. For first-order filters, the synchronous state of the network shows to be stable for any number of nodes. For second-order filter, there is a superior limit for the number of nodes, depending on the PLL parameters. Copyright (C) 2009 Atila Madureira Bueno et al.
Resumo:
The local atomic structures around the Zr atom of pure (undoped) ZrO(2) nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO(2) nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr-O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye-Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to the z direction; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.
Resumo:
ZrO(2)-10, 12 and 14 mol% Sc(2)O(3) nanopowders were prepared by using a nitrate-lysine gel-combustion synthesis. These materials were studied by synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy after calcination at different temperatures from 650 to 1200 degrees C, which led to samples with different average crystallite sizes, up to about 100 nm. The results from SXPD and Raman analyses indicate that, depending on Sc(2)O(3) content, the metastable t ''-form of the tetragonal phase or the cubic phase are fully retained at room temperature in nanocrystalline powders, provided an average crystallite sizes lower than similar to 30 nm. By contrast, powders with larger average crystallite sizes exhibit the stable rhombohedral, beta and gamma, phases and do not retain or very partially retain the metastable t '' and cubic ones.
Resumo:
Yttria stabilized tetragonal zirconia (Y-TZP) ceramics were sintered by liquid phase sintering at low temperatures using bioglass as sintering additive. ZrO2-bioglass ceramics were prepared by mixing a ZrO2 stabilized with 3 Mol%Y2O3 and different amounts of bioglass based on 3CaO center dot P2O5-MgO-SiO2 system. Mixtures were compacted by uniaxial cold pressing and sintered in air, at 1200 and 1300 degrees C for 120 min. The influence of the bioglass content on the densification, tetragonal phase stability, bending strength, hardness and fracture toughness was investigated. The ceramics sintered at 1300 degrees C and prepared by addition of 3% of bioglass, exhibited the highest strength of 435 MPa, hardness of 1170 HV and fracture toughness of 6.3 MPa m(1/2). These results are related to the low monoclinic phase content, high relative density and the presence of the thermal residual stress generated between the ZrO2-matrix and bioglass grain boundary, contributing to the activation of the toughening mechanisms. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
High solids content film-forming poly[styrene-co-(n-butyl acrylate)] [poly(Sty-co-BuA)] latexes armored with Laponite clay platelets have been synthesized by soap-free emulsion copolymerization of styrene and n-butyl acrylate. The polymerizations were performed in batch in the presence of Laponite and a methyl ether acrylateterminated poly(ethylene glycol) macromonomer in order to promote polymer/clay association. The overall polymerization kinetics showed a pronounced effect of clay on nucleation and stabilization of the latex particles. Cryo-transmission electron microscopy observation confirmed the armored morphology and indicated that the majority of Laponite platelets were located at the particle surface. The resulting nanostructured films displayed enhanced mechanical properties.
Resumo:
Catalytic ozonation has been recognized in the scientific community as an efficient technique, reaching elevated rates of recalcitrant organic material mineralization, even at the presence of scavenger species of hydroxyl free radicals. This study presents the most significant factors involving the leachate treatment stabilized by the municipal landfill of the city of Guaratingueta, State of Sao Paulo, Brazil, by using a catalytic ozonation activated by metallic ions Fe(3+), Zn(2+), Mn(2+), Ni(2+) and Cr(3+). The Taguchi L(16) orthogonal array and its associated statistical methods were also used in this study. Among the researched ions, the most notable catalysis was obtained with ferric ion, statistically significant in the reduction of COD with a confidence level of 99.5%.
Resumo:
The influence of Al(2)O(3) addition and sintering parameters on the mechanical properties and cytotoxicity of tetragonal ZrO(2)-3 mol% Y(2)O(3) ceramics was evaluated. Samples containing 0, 10, 20 and 30 wt.% of Al(2)O(3) particles were prepared by cold uniaxial pressing (80 MPa) and sintered in air at 1500, 1550 and 1600 degrees C for 120 min. The effects of the sintering conditions on the microstructure were analyzed by X-ray diffraction analysis and scanning electron microscopy. Hardness and fracture toughness were determined by the Vickers indentation method and the mechanical resistance by four-point bending tests. As a preliminary biological evaluation, ""in vitro"" cytotoxicity tests were realized to determine the cytotoxic level of the ZrO(2)-Al(2)O(3) composites, using the neutral red uptake method with NCTC clones L929 from the American Type Culture Collection (ATCC) bank. Fully dense ceramic materials were obtained with a hardness ranging between 1340 HV and 1585 HV, depending on the amount of Al(2)O(3) in the ZrO(2) matrix. On the other hand, no significant influence of the Al(2)O(3) addition on fracture toughness was observed, exhibiting values near 8 MPa m(1/2) for all compositions and sintering conditions studied. The non-cytotoxic behavior, the elevated fracture toughness, the good bending strength (sigma(f) = 690 MPa) and the elevated Weibull`s modulus (m = 11) exhibited by the material, show that these ceramic composites are highly suitable biomaterials for dental implant applications. (C) 2008 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
This paper develops H(infinity) control designs based on neural networks for fully actuated and underactuated cooperative manipulators. The neural networks proposed in this paper only adapt the uncertain dynamics of the robot manipulators. They work as a complement of the nominal model. The H(infinity) performance index includes the position errors as well the squeeze force errors between the manipulator end-effectors and the object, which represents a complete disturbance rejection scenario. For the underactuated case, the squeeze force control problem is more difficult to solve due to the loss of some degrees of manipulator actuation. Results obtained from an actual cooperative manipulator, which is able to work as a fully actuated and an underactuated manipulator, are presented. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Controlling the phase stability of ZrO2 nanoparticles is of major importance in the development of new ZrO2-based nanotechnologies. Because of the fact that in nanoparticles the surface accounts for a larger fraction of the total atoms, the relative phase stability can be controlled throughout the surface composition, which can be toned by surface excess of one of the components of the system., The objective of this work is to delineate a relationship between surface excess (or solid solution) of MgO relative to ZrO2 and the polymorphic stability of (ZrO2)(1-x) - (MgO), nanopowders, where 0.0 <= x <= 0.6. The nanopowders were prepared by a liquid precursor method at 500 degrees C and characterized by N-2 adsorption (BET), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), and Raman spectroscopy. For pure ZrO2 samples, both tetragonal and monoclinic polymorphs were detected, as expected considering the literature. For MgO molar fractions varying from 0.05 to 0.10, extensive solid solution could not be detected, and a ZrO2 surface energy reduction, caused by Mg surface excess detected by XPS, promoted tetragonal polymorph thermodynamic stabilization with relation to monoclinic. For MgO molar fractions higher than 0.10 and up to 0.40, Mg solid solution could be detected and induced cubic phase stabilization. MgO periclase was observed only at x = 0.6. A discussion based on the relationship between the surface excess, surface energy, and polymorph stability is presented.
Resumo:
A combination of chemostat cultivation and a defined medium was used to demonstrate that uracil limitation leads to a drastic alteration in the physiology of auxotrophic cells of Saccharomyces cerevisiae. Under this condition, the carbon source is dissimilated mainly to ethanol and acetate, even in fully aerobic cultures grown at 0.1 h(-1), which is far below the critical dilution rate. Differently from nitrogen-, sulphur-, or phosphate-limited cultures, uracil limitation leads to residual sugar (either glucose or sucrose) concentrations below 2 mM, which characterizes a situation of double-limitation: by the carbon source and by uracil. Furthermore, the specific rates of CO(2) production and O(2) consumption are increased when compared to the corresponding prototrophic strain. We conclude that when auxotrophic strains are to be used for quantitative physiological studies, special attention must be paid to the cultivation conditions, mainly regarding medium formulation, in order to avoid limitation of growth by the auxotrophic nutrient.
Resumo:
The temperature influence on the gate-induced floating body effect (GIFBE) in fully depleted (FD) silicon-on-insulator (SOI) nMOSFETs is investigated, based on experimental results and two-dimensional numerical simulations. The GIFBE behavior will be evaluated taking into account the impact of carrier recombination and of the effective electric field mobility degradation on the second peak in the transconductance (gm). This floating body effect is also analyzed as a function of temperature. It is shown that the variation of the studied parameters with temperature results in a ""C"" shape of the threshold voltage corresponding with the second peak in the gm curve. (C) 2008 Elsevier Ltd. All rights reserved.