978 resultados para FLUORESCENCE IN SITU HYBRIDIZATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: The objective of this study was to evaluate the accuracy, ease of use and reproducibility of chromogenic in situ hybridisation (CISH) for HER2 testing by studying its inter-laboratory concordance in five Australian pathology laboratories. Methods: The HER2 status of 49 breast cancers was determined by CISH twice in two different laboratories. Each sample had previously been tested by immunohistochemistry (IHC; 2+ and 3+ cases selected) and fluorescence in situ hybridisation ( FISH). Participating laboratories were blinded to these test results. Oestrogen receptor ( ER) status was also evaluated for each cancer. Results: High correlation was observed between FISH and CISH results. No cases showing high gene amplification by FISH were scored as non-amplified by CISH ( kappa coefficient=1). High correlation was observed between IHC and CISH, all IHC 3+ samples showing amplification by CISH. Inter-laboratory CISH concordance was also good ( kappa coefficient=0.67). Fifty-six per cent of HER2-amplified samples tested ER positive, while 42% of ER-positive cases showed HER2 gene amplification, confirming that HER2 testing should not be confined to ER-negative breast cancers. Conclusions: These findings demonstrate that CISH is a robust test to assess HER2 status in breast cancer and therefore is an important addition to the HER2 testing algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromogenic in situ hybridisation (CISH) has become an attractive alternative to fluorescence in situ hybridisation (FISH) due to its permanent stain which is more familiar to pathologists and because it can be viewed using light microscopy, The aim of the present study is to examine reproducibility in the assessment of abnormal chromosome number by CISH in comparison to FISH. Using three prostate cell lines - PNTIA (derived from normal epithelium), LNCAP and DU145 (derived from prostatic carcinoma), chromosomes 7 and 8 were counted in 40 nuclei in FISH preparations (x100 oil immersion) and 100 nuclei in CISH preparations (x40) by two independent observers. The CISH slides were examined using standard fight microscopy and virtual microscopy. Reproducibitity was examined using paired Student's t-test (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determination of HER2 protein expression by immunohistochemistry (IHC) and genomic status by fluorescent in situ hybridisation (FISH) are important in identifying a subset of high HER2-expressing gastric cancers that might respond to trastuzumab. Although FISH is considered the standard for determination of HER2 genomic status, brightfield ISH is being increasingly recognised as a viable alternative. Also, the impact of HER2 protein expression/genomic heterogeneity on the accuracy of HER2 testing has not been well studied in the context of gastric biopsy samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE:: Report of a 16q24.1 deletion in a premature newborn, demonstrating the usefulness of array-based comparative genomic hybridization in persistent pulmonary hypertension of the newborn and multiple congenital malformations. DESIGN:: Descriptive case report. SETTING:: Genetic department and neonatal intensive care unit of a tertiary care children's hospital. INTERVENTIONS:: None. PATIENT:: We report the case of a preterm male infant, born at 26 wks of gestation. A cardiac malformation and bilateral hydronephrosis were diagnosed at 19 wks of gestation. Karyotype analysis was normal, and a 22q11.2 microdeletion was excluded by fluorescence in situ hybridization analysis. A cesarean section was performed due to fetal distress. The patient developed persistent pulmonary hypertension unresponsive to mechanical ventilation and nitric oxide treatment and expired at 16 hrs of life. MEASUREMENTS AND MAIN RESULTS:: An autopsy revealed partial atrioventricular canal malformation and showed bilateral dilation of the renal pelvocaliceal system with bilateral ureteral stenosis and annular pancreas. Array-based comparative genomic hybridization analysis (Agilent oligoNT 44K, Agilent Technologies, Santa Clara, CA) showed an interstitial microdeletion encompassing the forkhead box gene cluster in 16q24.1. Review of the pulmonary microscopic examination showed the characteristic features of alveolar capillary dysplasia with misalignment of pulmonary veins. Some features were less prominent due to the gestational age. CONCLUSIONS:: Our review of the literature shows that alveolar capillary dysplasia with misalignment of pulmonary veins is rare but probably underreported. Prematurity is not a usual presentation, and histologic features are difficult to interpret. In our case, array-based comparative genomic hybridization revealed a 16q24.1 deletion, leading to the final diagnosis of alveolar capillary dysplasia with misalignment of pulmonary veins. It emphasizes the usefulness of array-based comparative genomic hybridization analysis as a diagnostic tool with implications for both prognosis and management decisions in newborns with refractory persistent pulmonary hypertension and multiple congenital malformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Changes in the composition of gastrointestinal microbiota by dietary interventions using pro- and prebiotics provide opportunity for improving health and preventing disease. However, the capacity of lupin kernel fiber (LKFibre), a novel legume-derived food ingredient, to act as a prebiotic and modulate the colonic microbiota in humans needed investigation.

Aim of the study The present study aimed to determine the effect of LKFibre on human intestinal microbiota by quantitative fluorescent in situ hybridization (FISH) analysis.

Design A total of 18 free-living healthy males between the ages of 24 and 64 years consumed a control diet and a LKFibre diet (containing an additional 17–30 g/day fiber beyond that of the control—incorporated into daily food items) for 28 days with a 28-day washout period in a single-blind, randomized, crossover dietary intervention design.
Methods Fecal samples were collected for 3 days towards the end of each diet and microbial populations analyzed by FISH analysis using 16S rRNA gene-based oligonucleotide probes targeting total and predominant microbial populations.

Results Significantly higher levels of Bifidobacterium spp. (P = 0.001) and significantly lower levels of the clostridia group of C. ramosum, C. spiroforme and C. cocleatum (P = 0.039) were observed on the LKFibre diet compared with the control. No significant differences between the LKFibre and the control diet were observed for total bacteria, Lactobacillus spp., the Eubacterium spp., the C. histolyticum/C. lituseburense group and the Bacteroides–Prevotella group.
Conclusions Ingestion of LKFibre stimulated colonic bifidobacteria growth, which suggests that this dietary fiber may be considered as a prebiotic and may beneficially contribute to colon health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: At the end of 80s, cloning technologies with the increase of the antibodies’ sensibility made easier the development of technologies based on Fluorescence in situ Hibridation (FISH). Nowadays, It’s widely used in the field of basic investigation as much as clinic diagnostic. Method: FISH is a technique that combines molecular biology with histochemistry way to detect specific nucleotide sequences so that chromosome’s section or even whole chromosome can be marked on metaphases cells (cell in division) and on attached cellular nucleus. This detection is realized using DNA fluorescence probes (marked with fluorophores), that can be different according to the structures manage to detect: large single-locus probes, small unique-sequence probes, chromosome- or region-specific “paints” or repetitive sequence probes and genomic DNA probes. Some of the applications of this technique is that can be so useful in the detection of numerical and structural chromosomal alterations such as polyploidies or genomic rearrangement, to mapping metaphases cells and even to detect bacteria or another type of microorganism. In addition, FISH allows us to monitoring diseases (antitumor therapies, quantification of genomic altered cells…) and the precise location of chromosomic broken spots on tumor searching for new genes involved in cancer and detect and map interested known genes. Conclusion: FISH has many advantages ahead of conventional cytogenetic techniques (bands G karyotype) overall at the time of establish a clinic diagnostic to detect tumors and chromosomic aberration, presenting a higher sensibility and specificity as well as being a relative quick technique (24 hours).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the advent of cytogenetic analysis, knowledge about fundamental aspects of cancer biology has increased, allowing the processes of cancer development and progression to be more fully understood and appreciated. Classical cytogenetic analysis of solid tumors had been considered difficult, but new advances in culturing techniques and the addition of new cytogenetic technologies have enabled a more comprehensive analysis of chromosomal aberrations associated with solid tumors. Our purpose in this review is to discuss the cytogenetic findings on a number of nonmelanoma skin cancers, including squamous- and basal cell carcinomas, keratoacanthoma, squamous cell carcinoma in situ (Bowen's disease), and solar keratosis. Through classical cytogenetic techniques, as well as fluorescence-based techniques such as fluorescence in situ hybridization and comparative genomic hybridization, numerous chromosomal alterations have been identified. These aberrations may aid in further defining the stages and classifications of nonmelanoma skin cancer and also may implicate chromosomal regions involved in progression and metastatic potential. This information, along with the development of newer technologies (including laser capture microdissection and comparative genomic hybridization arrays) that allow for more refined analysis, will continue to increase our knowledge about the role of chromosomal events at all stages of cancer development and progression and, more specifically, about how they are associated with nonmelanoma skin cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Findings from the phase 3 FLEX study showed that the addition of cetuximab to cisplatin and vinorelbine significantly improved overall survival, compared with cisplatin and vinorelbine alone, in the first-line treatment of EGFR-expressing, advanced non-small-cell lung cancer (NSCLC). We investigated whether candidate biomarkers were predictive for the efficacy of chemotherapy plus cetuximab in this setting. Methods: Genomic DNA extracted from formalin-fixed paraffin-embedded (FFPE) tumour tissue of patients enrolled in the FLEX study was screened for KRAS codon 12 and 13 and EGFR kinase domain mutations with PCR-based assays. In FFPE tissue sections, EGFR copy number was assessed by dual-colour fluorescence in-situ hybridisation and PTEN expression by immunohistochemistry. Treatment outcome was investigated according to biomarker status in all available samples from patients in the intention-to-treat population. The primary endpoint in the FLEX study was overall survival. The FLEX study, which is ongoing but not recruiting participants, is registered with ClinicalTrials.gov, number NCT00148798. Findings: KRAS mutations were detected in 75 of 395 (19%) tumours and activating EGFR mutations in 64 of 436 (15%). EGFR copy number was scored as increased in 102 of 279 (37%) tumours and PTEN expression as negative in 107 of 303 (35%). Comparisons of treatment outcome between the two groups (chemotherapy plus cetuximab vs chemotherapy alone) according to biomarker status provided no indication that these biomarkers were of predictive value. Activating EGFR mutations were identified as indicators of good prognosis, with patients in both treatment groups whose tumours carried such mutations having improved survival compared with those whose tumours did not (chemotherapy plus cetuximab: median 17·5 months [95% CI 11·7-23·4] vs 8·5 months [7·1-10·8], hazard ratio [HR] 0·52 [0·32-0·84], p=0·0063; chemotherapy alone: 23·8 months [15·2-not reached] vs 10·0 months [8·7-11·0], HR 0·35 [0·21-0·59], p<0·0001). Expression of PTEN seemed to be a potential indicator of good prognosis, with patients whose tumours expressed PTEN having improved survival compared with those whose tumours did not, although this finding was not significant (chemotherapy plus cetuximab: median 11·4 months [8·6-13·6] vs 6·8 months [5·9-12·7], HR 0·80 [0·55-1·16], p=0·24; chemotherapy alone: 11·0 months [9·2-12·6] vs 9·3 months [7·6-11·9], HR 0·77 [0·54-1·10], p=0·16). Interpretation: The efficacy of chemotherapy plus cetuximab in the first-line treatment of advanced NSCLC seems to be independent of each of the biomarkers assessed. Funding: Merck KGaA. © 2011 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a novel technology for the rapid healing of large osseous and chondral defects, based upon the genetic modification of autologous skeletal muscle and fat grafts. These tissues were selected because they not only possess mesenchymal progenitor cells and scaffolding properties, but also can be biopsied, genetically modified and returned to the patient in a single operative session. First generation adenovirus vector carrying cDNA encoding human bone morphogenetic protein-2 (Ad.BMP-2) was used for gene transfer to biopsies of muscle and fat. To assess bone healing, the genetically modified (“gene activated”) tissues were implanted into 5mm-long critical size, mid-diaphyseal, stabilized defects in the femora of Fischer rats. Unlike control defects, those receiving gene-activated muscle underwent rapid healing, with evidence of radiologic bridging as early as 10 days after implantation and restoration of full mechanical strength by 8 weeks. Histologic analysis suggests that the grafts rapidly differentiated into cartilage, followed by efficient endochondral ossification. Fluorescence in situ hybridization detection of Y-chromosomes following the transfer of male donor muscle into female rats demonstrated that at least some of the osteoblasts of the healed bone were derived from donor muscle. Gene activated fat also healed critical sized defects, but less quickly than muscle and with more variability. Anti-adenovirus antibodies were not detected. Pilot studies in a rabbit osteochondral defect model demonstrated the promise of this technology for healing cartilage defects. Further development of these methods should provide ways to heal bone and cartilage more expeditiously, and at lower cost, than is presently possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription is a fundamental step in gene expression, yet it remains poorly understood at a cellular level. Visualization of transcription sites and active genes has led to the suggestion that transcription occurs at discrete sites in the nucleus, termed transcription factories, where multiple active RNA polymerases are concentrated and anchored to a nuclear substructure. However, this concept is not universally accepted. This Review discusses the experimental evidence in support of the transcription factory model and the evidence that argues against such a spatially structured view of transcription. The transcription factory model has implications for the regulation of transcription initiation and elongation, for the organization of genes in the genome, for the co-regulation of genes and for genome instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global landscape of molecular testing is rapidly changing, with the recent publication of the International Association for the Study of Lung Cancer (IASLC)/College of American Pathologists (CAP) guidelines and the ALK Atlas. The IASLC/CAP guidelines recommend that tumors from patients with non-small cell lung cancer (NSCLC) be tested for ALK rearrangements in addition to epidermal growth factor receptor (EGFR) mutations. The spur for this recommendation is the availability of novel therapies that target these rearrangements. This article is based on coverage of a Pfizer-sponsored National Working Group Meeting on ALK Diagnostics in Lung Cancer, held around the 15th World Lung Cancer Conference, in Sydney on October 31, 2013. It is based on the presentations given by the authors at the meeting and the discussion that ensued. The content for this article was discussed and agreed on by the authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ecology of the uncultured, but large and morphologically conspicuous, rumen bacterium Oscillospira spp. was studied. Oscillospira-specific 16S rRNA gene sequences were detected in North American domestic cattle, sheep from Australia and Japan, and Norwegian reindeer. Phylogenetic analysis of the sequences obtained allowed definition of three operational taxonomic units within the Oscillospira clade. Consistent with this genetic diversity, we observed atypical smaller morphotypes by using an Oscillospira-specific fluorescence in situ hybridization probe. Despite the visual disappearance of typical large Oscillospira morphotypes, the presence of Oscillospira spp. was still detected by Oscillospira-specific PCR in the rumen of cattle and sheep. These observations suggest the broad presence of Oscillospira species in various rumen ecosystems with the level, and most likely the morphological form, dependent on diet. An ecological analysis based on enumeration of the morphologically conspicuous, large-septate form confirms that the highest counts are associated with the feeding of fresh forage diets to cattle and sheep and in two different subspecies of reindeer investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosomal alterations in leukemia have been shown to have prognostic and predictive significance and are also important minimal residual disease (MRD) markers in the follow-up of leukemia patients. Although specific oncogenes and tumor suppressors have been discovered in some of the chromosomal alterations, the role and target genes of many alterations in leukemia remain unknown. In addition, a number of leukemia patients have a normal karyotype by standard cytogenetics, but have variability in clinical course and are often molecularly heterogeneous. Cytogenetic methods traditionally used in leukemia analysis and diagnostics; G-banding, various fluorescence in situ hybridization (FISH) techniques, and chromosomal comparative genomic hybridization (cCGH), have enormously increased knowledge about the leukemia genome, but have limitations in resolution or in genomic coverage. In the last decade, the development of microarray comparative genomic hybridization (array-CGH, aCGH) for DNA copy number analysis and the SNP microarray (SNP-array) method for simultaneous copy number and loss of heterozygosity (LOH) analysis has enabled investigation of chromosomal and gene alterations genome-wide with high resolution and high throughput. In these studies, genetic alterations were analyzed in acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). The aim was to screen and characterize genomic alterations that could play role in leukemia pathogenesis by using aCGH and SNP-arrays. One of the most important goals was to screen cryptic alterations in karyotypically normal leukemia patients. In addition, chromosomal changes were evaluated to narrow the target regions, to find new markers, and to obtain tumor suppressor and oncogene candidates. The work presented here shows the capability of aCGH to detect submicroscopic copy number alterations in leukemia, with information about breakpoints and genes involved in the alterations, and that genome-wide microarray analyses with aCGH and SNP-array are advantageous methods in the research and diagnosis of leukemia. The most important findings were the cryptic changes detected with aCGH in karyotypically normal AML and CLL, characterization of amplified genes in 11q marker chromosomes, detection of deletion-based mechanisms of MLL-ARHGEF12 fusion gene formation, and detection of LOH without copy number alteration in karyotypically normal AML. These alterations harbor candidate oncogenes and tumor suppressors for further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 50 µg cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 °C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and β-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 °C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence analysis of PCR-amplified 16S rRNA genes showed that Nitrosospira-like AOB in clusters 2 and 3 were predominant in the oily landfarming soil. This observation was supported by fluorescence in situ hybridization (FISH) analysis of the AOB grown on the soil-incubated cation-exchange membranes. The results of this thesis expand the suggested importance of Nitrosospira-like AOB in terrestrial environments to include chronically oil-contaminated soils.