574 resultados para Fármaco neuroprotetores


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O Citocromo P450 2D6 (CYP 2D6) é uma importante enzima metabolizadora de fármacos. Apesar de representar apenas 2% do total das isoenzimas CYP, o CYP 2D6 tem um papel importante pois é responsável pela metabolização de cerca de 20 a 25% dos fármacos mais frequentemente utilizados. (Ramamoorthy, 2010) É sabido que nem todos os indivíduos respondem da mesma maneira a um fármaco, podendo alguns sofrer reação adversa devido à toma deste e outros nem apresentar qualquer efeito terapêutico. Tais diferenças na resposta terapêutica devem-se a variações genómicas interindividuais, nos genes que codificam as enzimas responsáveis pelo metabolismo do fármaco. Os alelos polimórficos podem levar a uma redução ou aumento na capacidade metabólica, ao passo que um aumento do número de cópias do gene CYP 2D6 pode conduzir a um aumento da atividade metabólica. Os indivíduos comportam-se de acordo com o seu fenótipo, como metabolizadores lentos, rápidos ou ultra-rápidos (Abraham, 2001) Visto existirem grandes alterações nesta enzima metabolizadora de fármacos, é importante perceber quais as situações onde a segurança e a eficácia estão alteradas, pois qualquer terapêutica tem sempre como base o binómio risco/beneficio. Para além do seu papel bem estabelecido na segurança e eficácia terapêutica, estudos mais recentes relatam que o CYP 2D6 desempenha um papel importante no aparecimento de algumas doenças, condicionando a predisposição individual para patologias, de que é exemplo a esclerose sistémica. (Sanjay Harhang & al, 2001) Como desenvolvimento desta monografia pretende-se estudar os efeitos a nível de segurança e eficácia em determinadas situações terapêuticas e ainda avaliar a associação dos polimorfismos no CYP 2D6 com a predisposição individual para patologias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta monografia tem por objectivo analisar a contribuição da Química Supramolecular no desenvolvimento de aplicações farmacoterapêuticas. É apresentada uma revisão e é feita uma análise detalhada das propriedades e aplicações já existentes das ciclodextrinas e também de novos nano-contentores que possam ter estas aplicações no futuro, com destaque para os cucurbiturilos. A Química Supramolecular é o ramo da Química que se foca no estudo das interacções não covalentes. Segundo Jean-Marie Lehn, Prémio Nobel da Química em 1987, a Química Supramolecular é o campo da ciência que estuda os conceitos químicos, físicos e biológicos de espécies químicas de grande complexidade que se mantêm unidas e organizadas através de interacções não covalentes. Relacionado com a Química Supramolecular está o conceito drug delivery, o processo de administração de fármacos com finalidade terapêutica. Neste processo podem ser utilizados complexos moleculares que aprisionam um fármaco, protegendo-o e alterando o seu perfil de libertação, absorção, distribuição e eliminação. Desta forma o fármaco chega ao local de interesse de uma forma mais eficaz e segura. As Ciclodextrinas são estruturas da família dos ciclo-oligossacarídeos correntemente usadas nestas aplicações terapêuticas. Possuem uma cavidade relativamente apolar no seu interior, com a capacidade de encapsular componentes hidrofóbicos. O exterior é hidrofílico, sendo pois solúveis em água. Possuem baixa toxicidade, dependendo da via de administração. São usadas em aplicações farmacêuticas, nomeadamente como forma de melhorar a biodisponibilidade do fármaco. Os Cucurbiturilos são uma família de contentores moleculares que podem encapsular uma variedade de espécies catiónicas e neutras com alta afinidade. Por esta razão mostram grande potencial em drug delivery. Foram feitos vários estudos no sentido de avaliar a toxicidade e estabilidade destas moléculas transportadoras. Até agora todos os resultados apontam para um futuro promissor dos cucurbiturilos em aplicações farmacoterapêuticas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O cancro é uma das mais conhecidas e temidas doenças existentes e, como tal, existe um grande interesse no desenvolvimento de métodos de tratamento das afeções tumorais. Os grandes avanços da quimioterapia têm dado ótimos resultados no tratamento do cancro. Contudo, a administração de fármacos antineoplásicos não garante uma elevada eficácia pois os tecidos tumorais apresentam propriedades estruturais que dificultam o transporte de agentes terapêuticos, como a disposição heterogénea dos vasos sanguíneos, a ausência de sistema linfático funcional, as inúmeras barreiras de transporte que o fármaco enfrenta até chegar às células alvo ou a disparidade da expressão de antigénios e recetores nas próprias células. Para além disso, os agentes quimioterapêuticos exibem elevada toxicidade não específica, afetando tanto as células tumorais como as células saudáveis, o que resulta frequentemente em severos efeitos secundários. Se a dose for reduzida para diminuir estes efeitos, a eficácia do tratamento diminuirá também; por outro lado, o aumento da dose, apesar de permitir um melhor controlo do crescimento do tumor, leva também a uma maior toxicidade nos tecidos saudáveis. Para contornar este efeito têm-se desenvolvido diferentes tipos de sistemas de libertação de fármacos com o objetivo de maximizar o direcionamento para os tumores e minimizar a toxicidade sistémica. Entre estas alternativas figuram os chamados smart polymers, que são macromoléculas que sofrem rápidas e reversíveis mudanças na sua estrutura em resposta a estímulos, os quais correspondem geralmente a pequenas alterações no meio, como pH, temperatura, incidência de radiação ou presença de determinadas substâncias químicas. Assim, associando um fármaco a um destes polímeros, em geral recorrendo a técnicas de encapsulação, é possível fazer com que a libertação do fármaco ocorra apenas nas células tumorais, seja por estas apresentarem as características necessárias para alterar a estrutura dos polímeros (acidez ou temperatura diferente das células saudáveis, por exemplo) ou por se conferir externamente à zona do tumor essas mesmas características (por exemplo, incidindo radiação na zona afetada). Os smart polymers têm outras vantagens. Os fármacos conjugados com estes polímeros têm tendência para se acumularem nos tecidos tumorais devido aos altos efeitos de permeabilidade e retenção nestas células e também demonstram menor toxicidade sistémica comparativamente com o fármaco livre. Além disso, os sistemas de libertação poliméricos podem permitir o aumento do tempo de semivida plasmático e da solubilidade dos fármacos de baixo peso molecular, assim como a sua libertação controlada. Com este trabalho pretende-se estudar mais profundamente de que forma é que a utilização dos smart polymers pode aumentar a eficácia e diminuir a toxicidade sistémica das terapias anticancerígenas no tratamento de afeções tumorais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os sistemas de veiculação de fármacos, presentemente, apresentam-se como uma alternativa viável às terapias convencionais. De entre os diversos sistemas de transporte passíveis de associar substâncias farmacologicamente activas, destacam-se os de base lipídica, em particular, os lipossomas, os quais constituem um dos sistemas mais estudados e com maior sucesso, comprovado pelo número de produtos em fase clínica ou já aprovados para utilização em humanos. Os lipossomas são estruturas constituídas por membranas lipídicas organizadas em bicamadas, fechadas e concêntricas, que permitem a encapsulação de moléculas hidrofílicas no espaço interno aquoso e hidrofóbicas na bicamada lipídica. No presente trabalho, foram desenvolvidas metodologias com vista à encapsulação em lipossomas do aminoglicosídeo, a Paromomicina (PRM). Este fármaco está indicado para o tratamento de doenças infecciosas nomeadamente parasitárias e bacterianas. Algumas das principais desvantagens resultantes da sua utilização em clínica são, o reduzido tempo de circulação na corrente sanguínea, rápida excreção renal e consequentemente insuficiente concentração intracelular do fármaco. Como forma de ultrapassar algumas das desvantagens apresentadas, foram desenvolvidas formulações lipossomais de PRM com vista a melhorar o desempenho deste antibiótico. Para tal, foram preparadas e caracterizadas diversas formulações lipossomais de PRM com vista à selecção daquelas que apresentem maiores valores de eficácia de encapsulação (E.E.), e superior estabilidade. Com as formulações seleccionadas foram realizados estudos in vitro de interacção lipossoma-célula, utilizando uma linha celular humana monocítica leucémica, THP-1. De entre as formulações desenvolvidas e seleccionadas para os estudos in vitro de a formulação DPPC:DPPG, foi uma das que apresentou uma E.E. superior a 80% e valores de internalização celular superiores a 90%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O cancro é hoje em dia um dos principais fatores de morbilidade e mortalidade. No ano de 2010, o National Institute of Health estimou os custos associados ao cancro em cerca de 263,8 biliões de dólares. Desta forma, a investigação nesta área continua a procurar formas de otimizar os tratamentos, aliviando o sofrimento dos doentes e reduzindo os custos associados à doença. O tratamento do cancro tem evoluído no sentido de atingir uma maior seletividade para as células tumorais. As limitações associadas à quimioterapia com apenas um fármaco conduziram ao aparecimento de novas estratégias, nas quais se combinam diferentes terapêuticas, com diferentes mecanismos de ação, levando a um efeito sinergístico. Esta estratégia permite a administração de uma menor dose de cada fármaco, diminuindo assim os efeitos adversos. No entanto, existem limitações clínicas para estas terapêuticas convencionais relacionadas com as propriedades dos transportadores das membranas celulares, a baixa biodisponibilidade e a distribuição dos fármacos junto das células tumorais. A pesquisa de novas estratégias tornou-se uma necessidade para a obtenção de uma distribuição mais efetiva e especifica dos fármacos nas células tumorais. Assim, os nanossistemas foram extensamente estudados para aumentar a eficácia dos tratamentos. A nanotecnologia, através da encapsulação dos fármacos, permitiu melhorar os parâmetros farmacocinéticos dos fármacos, tendo ainda a vantagem de se poder fazer uma vetorização para as células tumorais, tendo por base o reconhecimento de recetores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado, Ciências Farmacêuticas, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado, Ciências Farmacêuticas, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Farmacêuticas, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado, Ciências Farmacêuticas, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Medicina (Neurocirurgia), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Bromatologia), Universidade de Lisboa, Faculdade de Farmácia, 2014