995 resultados para Experimental Tumor Immunoprophylaxis
Resumo:
Progressive destruction of the insulin-producing beta cells in nonobese diabetic mice is observed after infiltration of the pancreas with lymphocytes [Makino, S., Kunimoto, K., Muraoka, Y., Mizushima, Y., Katagiri, K. & Tochino, Y. (1980) Exp. Anim. (Tokyo) 29, 1-13]. We show that the genes for tumor necrosis factor alpha and granzyme A, a serine protease associated with cytoplasmic granules of cytotoxic cells, are expressed during the development of spontaneous diabetes mellitus in the nonobese diabetic mouse. Granzyme A-positive cells are found both in and surrounding the islets, implying induction prior to islet infiltration. Tumor necrosis factor alpha expression is exclusively observed in the intra-islet infiltrate, predominantly in lymphocytes adjacent to insulin-producing beta cells, the targets of the autoimmune destruction, implying that tumor necrosis factor alpha expression is induced locally--i.e., in the islet. A considerable portion of cells expressing tumor necrosis factor alpha appear to be CD4+ T cells. This T-cell subset was previously shown to be necessary for development of the disease. Thus, these findings may be important for understanding the pathogenesis of autoimmune diabetes mellitus and potentially also for that of other T-cell-mediated autoimmune diseases.
Resumo:
B cells undergo a complex series of maturation and selection steps in the bone marrow and spleen during differentiation into mature immune effector cells. The tumor necrosis factor (TNF) family member B cell activating factor of the TNF family (BAFF) (BLyS/TALL-1) plays an important role in B cell homeostasis. BAFF and its close homologue a proliferation-inducing ligand (APRIL) have both been shown to interact with at least two receptors, B cell maturation antigen (BCMA) and transmembrane activator and cyclophilin ligand interactor (TACI), however their relative contribution in transducing BAFF signals in vivo remains unclear. To functionally inactivate both BAFF and APRIL, mice transgenic for a soluble form of TACI were generated. They display a developmental block of B cell maturation in the periphery, leading to a severe depletion of marginal zone and follicular B2 B cells, but not of peritoneal B1 B cells. In contrast, mice transgenic for a soluble form of BCMA, which binds APRIL, have no detectable B cell phenotype. This demonstrates a crucial role for BAFF in B cell maturation and strongly suggests that it signals via a BCMA-independent pathway and in an APRIL-dispensable way.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-g revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-g in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-g activity in Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-9 revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-9 in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-9 activity in those cells and therefore prevent MMP-9-induced activation of TGF-b, which results in increased invasion. Curiously, xenografts of SW480 colorectal adenocarcinoma cells stably expressing the FN domain of MMP-9 displayed reduced growth at both the primary (subcutaneous) injection site and the lungs of NOD/SCID mice, in experimental metastasis assays, whilst the same cells overexpressing wt MMP-9 showed enhanced growth and dissemination. Gelatin zymography of conditioned medium revealed that these effects may be due to the FN domain, which displaces MMP-9 from SW480 cell surface. These observations suggest a dual role of MMP-9 and its FN domain in primary tumor growth and metastasis, underscoring the notion that the effect of MMP-9 on tumor cells may depend on the cell type and highlighting possible protective effects of MMPs in tumor progression.
Resumo:
Endogenous and infectious mouse mammary tumor viruses (MMTVs) encode in their 3' long terminal repeat a protein that exerts superantigen activity; that is, it is able to interact with T cells via the variable domain of the T cell receptor (TCR) beta chain. We show here that transmission of an infectious MMTV is prevented when superantigen-reactive cells are absent through either clonal deletion due to the expression of an endogenous MTV with identical superantigen specificity or exclusion due to expression of a transgenic TCR beta chain that does not interact with the viral superantigen. A strict requirement for superantigen-reactive T cells is also seen for a local immune response following MMTV infection. This immune response locally amplifies the number of MMTV-infected B cells, most likely owing to their clonal expansion. Collectively, our data indicate that a superantigen-induced immune response is critical for the MMTV life cycle.
Resumo:
The paradoxical coexistence of spontaneous tumor antigen-specific immune responses with progressive disease in cancer patients furthers the need to dissect the molecular pathways involved in tumor-induced T cell dysfunction. In patients with advanced melanoma, we have previously shown that the cancer-germline antigen NY-ESO-1 stimulates spontaneous NY-ESO-1-specific CD8(+) T cells that up-regulate PD-1 expression. We also observed that PD-1 regulates NY-ESO-1-specific CD8(+) T cell expansion upon chronic antigen stimulation. In the present study, we show that a fraction of PD-1(+) NY-ESO-1-specific CD8(+) T cells in patients with advanced melanoma up-regulates Tim-3 expression and that Tim-3(+)PD-1(+) NY-ESO-1-specific CD8(+) T cells are more dysfunctional than Tim-3(-)PD-1(+) and Tim-3(-)PD-1(-) NY-ESO-1-specific CD8(+) T cells, producing less IFN-γ, TNF, and IL-2. Tim-3-Tim-3L blockade enhanced cytokine production by NY-ESO-1-specific CD8(+) T cells upon short ex vivo stimulation with cognate peptide, thus enhancing their functional capacity. In addition, Tim-3-Tim-3L blockade enhanced cytokine production and proliferation of NY-ESO-1-specific CD8(+) T cells upon prolonged antigen stimulation and acted in synergy with PD-1-PD-L1 blockade. Collectively, our findings support the use of Tim-3-Tim-3L blockade together with PD-1-PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma.
Resumo:
The formation of a 'tumor-associated vasculature', a process referred to as tumor angiogenesis, is a stromal reaction essential for tumor progression. Inhibition of tumor angiogenesis suppresses tumor growth in many experimental models, thereby indicating that tumor-associated vasculature may be a relevant target to inhibit tumor progression. Among the antiangiogenic molecules reported to date many are peptides and proteins. They include cytokines, chemokines, antibodies to vascular growth factors and growth factor receptors, soluble receptors, fragments derived from extracellular matrix proteins and small synthetic peptides. The polypeptide tumor necrosis factor (TNF, Beromun) was the first drug registered for the regional treatment of human cancer, whose mechanisms of action involved selective disruption of the tumor vasculature. More recently, bevacizumab (Avastin), an antibody against vascular endothelial growth factor (VEGF)-A, was approved as the first systemic antiangiogenic drug that had a significant impact on the survival of patients with advanced colorectal cancer, in combination with chemotherapy. Several additional peptides and antibodies with antiangiogenic activity are currently tested in clinical trials for their therapeutic efficacy. Thus, peptides, polypeptides and antibodies are emerging as leading molecules among the plethora of compounds with antiangiogenic activity. In this article, we will review some of these molecules and discuss their mechanism of action and their potential therapeutic use as anticancer agents in humans.
Resumo:
PURPOSE: The aim of our study was to describe the clinical presentation of an unusual evanescent, exudative, choroidal pseudo-tumor with acute painful onset, and propose a pathogenesis. METHODS: We carried out a retrospective, observational study using the case series of three patients presenting with an evanescent, exudative, choroidal pseudo-tumor with acute painful onset. Ultra-widefield fluorescein and indocyanine green angiography (ICGA) using the Heidelberg Retina Angiograph and the Staurenghi 230 SLO Retina Lens were used to propose a pathogenesis of this unusual entity. RESULTS: In all three cases, acute ocular pain led to discovery of an exudative, partially hemorrhagic choroidal mass (thickness 2.4 mm-4.1 mm on ultrasound) that quickly regressed within weeks. In the subacute phase, all patients showed choroidal circulation abnormalities on dynamic wide-field ICGA in the affected quadrant, with delayed arterio-venous filling in two patients, and a poorly-defined vortex vein in the third. The choroidal circulation abnormalities resolved within 8-12 weeks, simultaneously with the spontaneous resolution of the choroidal pseudo-tumor. The findings evoked a self-resolving vortex vein occlusion in the corresponding quadrants with acute, painful choroidal exudation. CONCLUSIONS: An evanescent, exudative, hemorragic choroidal pseudo-tumor with acute painful onset may be caused by a vortex vein occlusion. Future patients need to be studied with ICGA in the acute phase to confirm this hypothesis.
Resumo:
We have analyzed the presentation of human histocompatability leukocyte antigen-A*0201-associated tumor peptide antigen MAGE-3271-279 by melanoma cells. We show that specific cytotoxic T lymphocyte (CTL)-recognizing cells transfected with a minigene encoding the preprocessed fragment MAGE-3271-279 failed to recognize cells expressing the full length MAGE-3 protein. Digestion of synthetic peptides extended at the NH2 or COOH terminus of MAGE-3271-279 with purified human proteasome revealed that the generation of the COOH terminus of the antigenic peptide was impaired. Surprisingly, addition of lactacystin to purified proteasome, though partially inhibitory, resulted in the generation of the antigenic peptide. Furthermore, treatment of melanoma cells expressing the MAGE-3 protein with lactacystin resulted in efficient lysis by MAGE-3271-279-specific CTL. We therefore postulate that the generation of antigenic peptides by the proteasome in cells can be modulated by the selective inhibition of certain of its enzymaticactivities.
Resumo:
Radiotherapy is successfully used to treat cancer. Emerging evidence, however, indicates that recurrences after radiotherapy are associated with increased local invasion, metastatic spreading and poor prognosis. Radiation-induced modifications of the tumor microenvironment have been proposed to contribute to increased aggressive tumor behavior, an effect also referred to as tumor bed effect, but the putative mechanisms involved have remained largely elusive. We have recently demonstrated that irradiation of the prospective tumor stroma impairs de novo angiogenesis through sustained inhibition of proliferation, migration and sprouting of endothelial cells. Experimental tumors growing within a pre-irradiated field have reduced tumor angiogenesis and tumor growth, increased hypoxia, necrosis, local invasion and distant metastasis. Mechanisms of progression involve adaptation of tumor cells to local hypoxic conditions as well as selection of cells with invasive and metastatic capacities. The matricellular protein CYR61 and integrin αVβ5 emerged as molecules that cooperate to mediate lung metastasis. Cilengitide, a small molecular inhibitor of αV integrins prevented lung metastasis formation. These results represent a conceptual advance to the understanding of the tumor bed effect and indicate that αV integrin inhibition might be a potential therapeutic approach for preventing metastasis in patients at risk for post-radiation recurrences.
Resumo:
Metastasis depends on the ability of tumor cells to establish a relationship with the newly seeded tissue that is conducive to their survival and proliferation. However, the factors that render tissues permissive for metastatic tumor growth have yet to be fully elucidated. Breast tumors arising during pregnancy display early metastatic proclivity, raising the possibility that pregnancy may constitute a physiological condition of permissiveness for tumor dissemination. Here we have shown that during murine gestation, metastasis is enhanced regardless of tumor type, and that decreased NK cell activity is responsible for the observed increase in experimental metastasis. Gene expression changes in pregnant mouse lung and liver were shown to be similar to those detected in premetastatic sites and indicative of myeloid cell infiltration. Indeed, myeloid-derived suppressor cells (MDSCs) accumulated in pregnant mice and exerted an inhibitory effect on NK cell activity, providing a candidate mechanism for the enhanced metastatic tumor growth observed in gestant mice. Although the functions of MDSCs are not yet understood in the context of pregnancy, our observations suggest that they may represent a shared mechanism of immune suppression occurring during gestation and tumor growth.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
CD8(+) CTLs play a critical role in antitumor immunity. However, vaccination with synthetic peptide containing CTL epitopes has not been generally effective in inducing protective antitumor immunity. In this study, we addressed the detailed mechanism(s) involved in this failure using a new tumor model of BALB/c transplanted tumors expressing NY-ESO-1, an extensively studied human cancer/testis Ag. Whereas peptide immunization with an H2-D(d)-restricted CTL epitope derived from NY-ESO-1 (NY-ESO-1 p81-88) induced NY-ESO-1(81-88)-specific CD8(+) T cells in draining lymph nodes and spleens, tumor growth was significantly enhanced. Single-cell analysis of specific CD8(+) T cells revealed that peptide immunization caused apoptosis of >80% of NY-ESO-1(81-88)-specific CD8(+) T cells at tumor sites and repetitive immunization further diminished the number of specific CD8(+) T cells. This phenomenon was associated with elevated surface expression of Fas and programmed death-1. When peptide vaccination was combined with an adjuvant, a TLR9 ligand CpG, the elevated Fas and programmed death-1 expression and apoptosis induction were not observed, and vaccine with peptide and CpG was associated with strong tumor growth inhibition. Selection of appropriate adjuvants is essential for development of effective cancer vaccines, with protection of effector T cells from peptide vaccine-induced apoptosis being a prime objective.
Resumo:
A proliferation-inducing ligand (APRIL) is a ligand of the tumor necrosis factor (TNF) family that stimulates tumor cell growth in vitro and in vivo. Expression of APRIL is highly upregulated in many tumors including colon and prostate carcinomas. Here we identify B cell maturation antigen (BCMA) and transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI), two predicted members of the TNF receptor family, as receptors for APRIL. APRIL binds BCMA with higher affinity than TACI. A soluble form of BCMA, which inhibits the proliferative activity of APRIL in vitro, decreases tumor cell proliferation in nude mice. Growth of HT29 colon carcinoma cells is blocked when mice are treated once per week with the soluble receptor. These results suggest an important role for APRIL in tumorigenesis and point towards a novel anticancer strategy.