550 resultados para Euclidean isometry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constellation Constrained (CC) capacity regions of a two-user Gaussian Multiple Access Channel(GMAC) have been recently reported. For such a channel, code pairs based on trellis coded modulation are proposed in this paper with MPSK and M-PAM alphabet pairs, for arbitrary values of M,toachieve sum rates close to the CC sum capacity of the GMAC. In particular, the structure of the sum alphabets of M-PSK and M-PAMmalphabet pairs are exploited to prove that, for certain angles of rotation between the alphabets, Ungerboeck labelling on the trellis of each user maximizes the guaranteed squared Euclidean distance of the sum trellis. Hence, such a labelling scheme can be used systematically,to construct trellis code pairs to achieve sum rates close to the CC sum capacity. More importantly, it is shown for the first time that ML decoding complexity at the destination is significantly reduced when M-PAM alphabet pairs are employed with almost no loss in the sum capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A continuous procedure is presented for euclideanization of Majorana and Weyl fermions without doubling their degrees of freedom. The Euclidean theory so obtained is SO(4) invariant and Osterwalder-Schrader (OS) positive. This enables us to define a one-complex parameter family of the N=1 supersymmetric Yang-Mills (SSYM) theories which interpolate between the Minkowski and a Euclidean SSYM theory. The interpolating action, and hence the Euclidean action, manifests all the continous symmetries of the original Minkowski space theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper I will offer a novel understanding of a priori knowledge. My claim is that the sharp distinction that is usually made between a priori and a posteriori knowledge is groundless. It will be argued that a plausible understanding of a priori and a posteriori knowledge has to acknowledge that they are in a constant bootstrapping relationship. It is also crucial that we distinguish between a priori propositions that hold in the actual world and merely possible, non-actual a priori propositions, as we will see when considering cases like Euclidean geometry. Furthermore, contrary to what Kripke seems to suggest, a priori knowledge is intimately connected with metaphysical modality, indeed, grounded in it. The task of a priori reasoning, according to this account, is to delimit the space of metaphysically possible worlds in order for us to be able to determine what is actual.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shape of the vector and scalar K-l3 form factors is investigated by exploiting analyticity and unitarity in a model-independent formalism. The method uses as input dispersion relations for certain correlators computed in perturbative QCD in the deep Euclidean region, soft-meson theorems, and experimental information on the phase and modulus of the form factors along the elastic part of the unitarity cut. We derive constraints on the coefficients of the parameterizations valid in the semileptonic range and on the truncation error. The method also predicts low-energy domains in the complex t plane where zeros of the form factors are excluded. The results are useful for K-l3 data analyses and provide theoretical underpinning for recent phenomenological dispersive representations for the form factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main results of this thesis show that a Patterson-Sullivan measure of a non-elementary geometrically finite Kleinian group can always be characterized using geometric covering and packing constructions. This means that if the standard covering and packing constructions are modified in a suitable way, one can use either one of them to construct a geometric measure which is identical to the Patterson-Sullivan measure. The main results generalize and modify results of D. Sullivan which show that one can sometimes use the standard covering construction to construct a suitable geometric measure and sometimes the standard packing construction. Sullivan has shown also that neither or both of the standard constructions can be used to construct the geometric measure in some situations. The main modifications of the standard constructions are based on certain geometric properties of limit sets of Kleinian groups studied first by P. Tukia. These geometric properties describe how closely the limit set of a given Kleinian group resembles euclidean planes or spheres of varying dimension on small scales. The main idea is to express these geometric properties in a quantitative form which can be incorporated into the gauge functions used in the modified covering and packing constructions. Certain estimation results for general conformal measures of Kleinian groups play a crucial role in the proofs of the main results. These estimation results are generalizations and modifications of similar results considered, among others, by B. Stratmann, D. Sullivan, P. Tukia and S. Velani. The modified constructions are in general defined without reference to Kleinian groups, so they or their variants may prove useful in some other contexts in addition to that of Kleinian groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An algorithm to generate a minimal spanning tree is presented when the nodes with their coordinates in some m-dimensional Euclidean space and the corresponding metric are given. This algorithm is tested on manually generated data sets. The worst case time complexity of this algorithm is O(n log2n) for a collection of n data samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of computing an approximate minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. Although in most such applications any cycle basis can be used, a low weight cycle basis often translates to better performance and/or numerical stability. Despite the fact that the problem can be solved exactly in polynomial time, we design approximation algorithms since the performance of the exact algorithms may be too expensive for some practical applications. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time O(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time O(n(3+2/k) ), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega) ) bound. We also present a 2-approximation algorithm with expected running time O(M-omega root n log n), a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that the asymmetric chiral gauging of the WZW models give rise to consistent string backgrounds. The target space structure of the chiral gauged SL(2,R) WZW model, with the gauging of subgroups SO(1, 1) in the left and U(1) in the right moving sector, is obtained. We then analyze the symmetries of the background and show the presence of a non-trivial isometry in the canonical parametrization of the WZW model. Using these results, the equivalence of the asymmetric models with the symmetric ones is demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the problem of designing codes for specific applications using deterministic annealing. Designing a block code over any finite dimensional space may be thought of as forming the corresponding number of clusters over the particular dimensional space. We have shown that the total distortion incurred in encoding a training set is related to the probability of correct reception over a symmetric channel. While conventional deterministic annealing make use of the Euclidean squared error distance measure, we have developed an algorithm that can be used for clustering with Hamming distance as the distance measure, which is required in the error correcting, scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c = 0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sandalwood is an economically important aromatic tree belonging to the family Santalaceae. The trees are used mainly for their fragrant heartwood and oil that have immense potential for foreign exchange. Very little information is available on the genetic diversity in this species. Hence studies were initiated and genetic diversity estimated using RAPD markers in 51 genotypes of Santalum album procured from different geographcial regions of India and three exotic lines of S. spicatum from Australia. Eleven selected Operon primers (10mer) generated a total of 156 consistent and unambiguous amplification products ranging from 200bp to 4kb. Rare and genotype specific bands were identified which could be effectively used to distinguish the genotypes. Genetic relationships within the genotypes were evaluated by generating a dissimilarity matrix based on Ward's method (Squared Euclidean distance). The phenetic dendrogram and the Principal Component Analysis generated, separated the 51 Indian genotypes from the three Australian lines. The cluster analysis indicated that sandalwood germplasm within India constitutes a broad genetic base with values of genetic dissimilarity ranging from 15 to 91 %. A core collection of 21 selected individuals revealed the same diversity of the entire population. The results show that RAPD analysis is an efficient marker technology for estimating genetic diversity and relatedness, thereby enabling the formulation of appropriate strategies for conservation, germplasm management, and selection of diverse parents for sandalwood improvement programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number of nodes on a region in Euclidean space, e.g., the unit square. After deployment, the nodes self-organise into a mesh topology. In a dense, homogeneous deployment, a frequently used approximation is to take the hop distance between nodes to be proportional to the Euclidean distance between them. In this paper, we analyse the performance of this approximation. We show that nodes with a certain hop distance from a fixed anchor node lie within a certain annulus with probability approach- ing unity as the number of nodes n → ∞. We take a uniform, i.i.d. deployment of n nodes on a unit square, and consider the geometric graph on these nodes with radius r(n) = c q ln n n . We show that, for a given hop distance h of a node from a fixed anchor on the unit square,the Euclidean distance lies within [(1−ǫ)(h−1)r(n), hr(n)],for ǫ > 0, with probability approaching unity as n → ∞.This result shows that it is more likely to expect a node, with hop distance h from the anchor, to lie within this an- nulus centred at the anchor location, and of width roughly r(n), rather than close to a circle whose radius is exactly proportional to h. We show that if the radius r of the ge- ometric graph is fixed, the convergence of the probability is exponentially fast. Similar results hold for a randomised lattice deployment. We provide simulation results that il- lustrate the theory, and serve to show how large n needs to be for the asymptotics to be useful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper develops a family of explicit algorithms for rotational dynamics and presents their comparison with several existing methods. For rotational motion the configuration space is a non-linear manifold, not a Euclidean vector space. As a consequence the rotation vector and its time derivatives correspond to different tangent spaces of rotation manifold at different time instants. This renders the usual integration algorithms for Euclidean space inapplicable for rotation. In the present algorithms this problem is circumvented by relating the equation of motion to a particular tangent space. It has been accomplished with the help of already existing relation between rotation increments which belongs to two different tangent spaces. The suggested method could in principle make any integration algorithm on Euclidean space, applicable to rotation. However, the present paper is restricted only within explicit Runge-Kutta enabled to handle rotation. The algorithms developed here are explicit and hence computationally cheaper than implicit methods. Moreover, they appear to have much higher local accuracy and hence accurate in predicting any constants of motion for reasonably longer time. The numerical results for solutions as well as constants of motion, indicate superior performance by most of our algorithms, when compared to some of the currently known algorithms, namely ALGO-C1, STW, LIEMID[EA], MCG, SUBCYC-M.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precoding for multiple-input multiple-output (MIMO) antenna systems is considered with perfect channel knowledge available at both the transmitter and the receiver. For two transmit antennas and QAM constellations, a real-valued precoder which is approximately optimal (with respect to the minimum Euclidean distance between points in the received signal space) among real-valued precoders based on the singular value decomposition (SVD) of the channel is proposed. The proposed precoder is obtainable easily for arbitrary QAM constellations, unlike the known complex-valued optimal precoder by Collin et al. for two transmit antennas which is in existence for 4-QAM alone and is extremely hard to obtain for larger QAM constellations. The proposed precoding scheme is extended to higher number of transmit antennas on the lines of the E - d(min) precoder for 4-QAM by Vrigneau et al. which is an extension of the complex-valued optimal precoder for 4-QAM. The proposed precoder's ML-decoding complexity as a function of the constellation size M is only O(root M)while that of the E - d(min) precoder is O(M root M)(M = 4). Compared to the recently proposed X- and Y-precoders, the error performance of the proposed precoder is significantly better while being only marginally worse than that of the E - d(min) precoder for 4-QAM. It is argued that the proposed precoder provides full-diversity for QAM constellations and this is supported by simulation plots of the word error probability for 2 x 2, 4 x 4 and 8 x 8 systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stochastic hybrid systems arise in numerous applications of systems with multiple models; e.g., air traffc management, flexible manufacturing systems, fault tolerant control systems etc. In a typical hybrid system, the state space is hybrid in the sense that some components take values in a Euclidean space, while some other components are discrete. In this paper we propose two stochastic hybrid models, both of which permit diffusion and hybrid jump. Such models are essential for studying air traffic management in a stochastic framework.