941 resultados para Environmental monitoring Statistical methods
Resumo:
2016
Resumo:
This PhD was driven by an interest for inclusive and participatory approaches. The methodology that bridges science and society is known as 'citizen science' and is experiencing a huge upsurge worldwide, in the scientific and humanities fields. In this thesis, I have focused on three topics: i) assessing the reliability of data collected by volunteers; ii) evaluating the impact of environmental education activities in tourist facilities; and iii) monitoring marine biodiversity through citizen science. In addition to these topics, during my research stay abroad, I developed a questionnaire to investigate people's perceptions of natural areas to promote the implementation of co-management. The results showed that volunteers are not only able to collect sufficiently reliable data, but that during their participation in this type of project, they can also increase their knowledge of marine biology and ecology and their awareness of the impact of human behaviour on the environment. The short-term analysis has shown that volunteers are able to retain what they have learned. In the long term, knowledge is usually forgotten, but awareness is retained. Increased awareness could lead to a change in behaviour and in this case a more environmentally friendly attitude. This aspect could be of interest for the development of environmental education projects in tourism facilities to reduce the impact of tourism on the environment while adding a valuable service to the tourism offer. We also found that nature experiences in childhood are important to connect to nature in adulthood. The results also suggest that membership or volunteering in an environmental education association could be a predictor of people's interest in more participatory approaches to nature management. In most cases, the COVID -19 pandemic had not changed participants' perceptions of the natural environment.
Resumo:
Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.
Resumo:
This thesis develops a comprehensive and a flexible statistical framework for the analysis and detection of space, time and space-time clusters of environmental point data. The developed clustering methods were applied in both simulated datasets and real-world environmental phenomena; however, only the cases of forest fires in Canton of Ticino (Switzerland) and in Portugal are expounded in this document. Normally, environmental phenomena can be modelled as stochastic point processes where each event, e.g. the forest fire ignition point, is characterised by its spatial location and occurrence in time. Additionally, information such as burned area, ignition causes, landuse, topographic, climatic and meteorological features, etc., can also be used to characterise the studied phenomenon. Thereby, the space-time pattern characterisa- tion represents a powerful tool to understand the distribution and behaviour of the events and their correlation with underlying processes, for instance, socio-economic, environmental and meteorological factors. Consequently, we propose a methodology based on the adaptation and application of statistical and fractal point process measures for both global (e.g. the Morisita Index, the Box-counting fractal method, the multifractal formalism and the Ripley's K-function) and local (e.g. Scan Statistics) analysis. Many measures describing the space-time distribution of environmental phenomena have been proposed in a wide variety of disciplines; nevertheless, most of these measures are of global character and do not consider complex spatial constraints, high variability and multivariate nature of the events. Therefore, we proposed an statistical framework that takes into account the complexities of the geographical space, where phenomena take place, by introducing the Validity Domain concept and carrying out clustering analyses in data with different constrained geographical spaces, hence, assessing the relative degree of clustering of the real distribution. Moreover, exclusively to the forest fire case, this research proposes two new methodologies to defining and mapping both the Wildland-Urban Interface (WUI) described as the interaction zone between burnable vegetation and anthropogenic infrastructures, and the prediction of fire ignition susceptibility. In this regard, the main objective of this Thesis was to carry out a basic statistical/- geospatial research with a strong application part to analyse and to describe complex phenomena as well as to overcome unsolved methodological problems in the characterisation of space-time patterns, in particular, the forest fire occurrences. Thus, this Thesis provides a response to the increasing demand for both environmental monitoring and management tools for the assessment of natural and anthropogenic hazards and risks, sustainable development, retrospective success analysis, etc. The major contributions of this work were presented at national and international conferences and published in 5 scientific journals. National and international collaborations were also established and successfully accomplished. -- Cette thèse développe une méthodologie statistique complète et flexible pour l'analyse et la détection des structures spatiales, temporelles et spatio-temporelles de données environnementales représentées comme de semis de points. Les méthodes ici développées ont été appliquées aux jeux de données simulées autant qu'A des phénomènes environnementaux réels; nonobstant, seulement le cas des feux forestiers dans le Canton du Tessin (la Suisse) et celui de Portugal sont expliqués dans ce document. Normalement, les phénomènes environnementaux peuvent être modélisés comme des processus ponctuels stochastiques ou chaque événement, par ex. les point d'ignition des feux forestiers, est déterminé par son emplacement spatial et son occurrence dans le temps. De plus, des informations tels que la surface bru^lée, les causes d'ignition, l'utilisation du sol, les caractéristiques topographiques, climatiques et météorologiques, etc., peuvent aussi être utilisées pour caractériser le phénomène étudié. Par conséquent, la définition de la structure spatio-temporelle représente un outil puissant pour compren- dre la distribution du phénomène et sa corrélation avec des processus sous-jacents tels que les facteurs socio-économiques, environnementaux et météorologiques. De ce fait, nous proposons une méthodologie basée sur l'adaptation et l'application de mesures statistiques et fractales des processus ponctuels d'analyse global (par ex. l'indice de Morisita, la dimension fractale par comptage de boîtes, le formalisme multifractal et la fonction K de Ripley) et local (par ex. la statistique de scan). Des nombreuses mesures décrivant les structures spatio-temporelles de phénomènes environnementaux peuvent être trouvées dans la littérature. Néanmoins, la plupart de ces mesures sont de caractère global et ne considèrent pas de contraintes spatiales com- plexes, ainsi que la haute variabilité et la nature multivariée des événements. A cet effet, la méthodologie ici proposée prend en compte les complexités de l'espace géographique ou le phénomène a lieu, à travers de l'introduction du concept de Domaine de Validité et l'application des mesures d'analyse spatiale dans des données en présentant différentes contraintes géographiques. Cela permet l'évaluation du degré relatif d'agrégation spatiale/temporelle des structures du phénomène observé. En plus, exclusif au cas de feux forestiers, cette recherche propose aussi deux nouvelles méthodologies pour la définition et la cartographie des zones périurbaines, décrites comme des espaces anthropogéniques à proximité de la végétation sauvage ou de la forêt, et de la prédiction de la susceptibilité à l'ignition de feu. A cet égard, l'objectif principal de cette Thèse a été d'effectuer une recherche statistique/géospatiale avec une forte application dans des cas réels, pour analyser et décrire des phénomènes environnementaux complexes aussi bien que surmonter des problèmes méthodologiques non résolus relatifs à la caractérisation des structures spatio-temporelles, particulièrement, celles des occurrences de feux forestières. Ainsi, cette Thèse fournit une réponse à la demande croissante de la gestion et du monitoring environnemental pour le déploiement d'outils d'évaluation des risques et des dangers naturels et anthro- pogéniques. Les majeures contributions de ce travail ont été présentées aux conférences nationales et internationales, et ont été aussi publiées dans 5 revues internationales avec comité de lecture. Des collaborations nationales et internationales ont été aussi établies et accomplies avec succès.
Resumo:
Mode of access: Internet.
Resumo:
The INTAMAP FP6 project has developed an interoperable framework for real-time automatic mapping of critical environmental variables by extending spatial statistical methods and employing open, web-based, data exchange protocols and visualisation tools. This paper will give an overview of the underlying problem, of the project, and discuss which problems it has solved and which open problems seem to be most relevant to deal with next. The interpolation problem that INTAMAP solves is the generic problem of spatial interpolation of environmental variables without user interaction, based on measurements of e.g. PM10, rainfall or gamma dose rate, at arbitrary locations or over a regular grid covering the area of interest. It deals with problems of varying spatial resolution of measurements, the interpolation of averages over larger areas, and with providing information on the interpolation error to the end-user. In addition, monitoring network optimisation is addressed in a non-automatic context.
Resumo:
This thesis stems from the project with real-time environmental monitoring company EMSAT Corporation. They were looking for methods to automatically ag spikes and other anomalies in their environmental sensor data streams. The problem presents several challenges: near real-time anomaly detection, absence of labeled data and time-changing data streams. Here, we address this problem using both a statistical parametric approach as well as a non-parametric approach like Kernel Density Estimation (KDE). The main contribution of this thesis is extending the KDE to work more effectively for evolving data streams, particularly in presence of concept drift. To address that, we have developed a framework for integrating Adaptive Windowing (ADWIN) change detection algorithm with KDE. We have tested this approach on several real world data sets and received positive feedback from our industry collaborator. Some results appearing in this thesis have been presented at ECML PKDD 2015 Doctoral Consortium.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Background: Urban air pollutants are associated with cardiovascular events. Traffic controllers are at high risk for pollution exposure during outdoor work shifts. Objective: The purpose of this study was to evaluate the relationship between air pollution and systemic blood pressure in traffic controllers during their work shifts. Methods: This cross-sectional study enrolled 19 male traffic controllers from Santo Andre city (Sao Paulo, Brazil) who were 30-60 years old and exposed to ambient air during outdoor work shifts. Systolic and diastolic blood pressure readings were measured every 15 min by an Ambulatory Arterial Blood Pressure Monitoring device. Hourly measurements (lags of 0-5 h) and the moving averages (2-5 h) of particulate matter (PM(10)), ozone (O(3)) ambient concentrations and the acquired daily minimum temperature and humidity means from the Sao Paulo State Environmental Agency were correlated with both systolic and diastolic blood pressures. Statistical methods included descriptive analysis and linear mixed effect models adjusted for temperature, humidity, work periods and time of day. Results: Interquartile increases of PM(10) (33 mu g/m(3)) and O(3) (49 mu g/m(3)) levels were associated with increases in all arterial pressure parameters, ranging from 1.06 to 2.53 mmHg. PM(10) concentration was associated with early effects (lag 0), mainly on systolic blood pressure. However, O(3) was weakly associated most consistently with diastolic blood pressure and with late cumulative effects. Conclusions: Santo Andre traffic controllers presented higher blood pressure readings while working their outdoor shifts during periods of exposure to ambient pollutant fluctuations. However, PM(10) and O(3) induced cardiovascular effects demonstrated different time courses and end-point behaviors and probably acted through different mechanisms. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A monitorização ambiental é essencial para a tomada de decisões tanto na ciência como na indústria. Em particular, uma vez que a água é essencial à vida e a superfície da Terra é composta principalmente por água, a monitorização do clima e dos parâmetros relacionados com a água em ecossistemas sensíveis, tais como oceanos, lagoas, rios e lagos, é de extrema importância. Um dos métodos mais comuns para monitorar a água é implantar bóias. O presente trabalho está integrado num projeto mais amplo, com o objetivo de projectar e desenvolver uma bóia autónoma para a investigação científica com dois modos de funcionamento: (i) monitorização ambiental ; e (ii) baliza ativa de regata. Assim, a bóia tem duas aplicações principais: a coleta e armazenamento de dados e a assistência a regatas de veleiros autónomos. O projeto arrancou há dois anos com um grupo de quatro estudantes internacionais. Eles projetaram e construíram a estrutura física, compraram e montaram o sistema de ancoragem da bóia e escolherem a maioria dos componentes electrónicos para o sistema geral de controlo e medição. Este ano, durante o primeiro semestre, dois estudantes belgas - Jeroen Vervenne e Hendrick Verschelde – trabalharam nos subsistemas de recolha e armazenamento de dados (unidade de controlo escrava) e de telemetria e configuração (unidade de controlo mestre) assim como definiram o protocolo de comunicação da aplicação. O trabalho desta tese continua o desenvolvimento do subsistema de telemetria e configuração. Este subsistema _e responsável pela configuração do modo de funcionamento e dos sensores assim como pela comunicação com a estacão de base (controlo ambiental), barcos (baliza ativa de regata) e com o subsistema de recolha e armazenamento de dados. O desenvolvimento do subsistema de recolha e armazenamento de dados, que coleta e armazena num cartão SD os dados dos sensores selecionados, prossegue com outro estudante belga - Mathias van Flieberge. O objetivo desta tese é, por um lado, implementar o subsistema de telemetria e de configuração na unidade de controle mestre e, por outro lado, refinar e implementar, conjuntamente com Mathias van Flieberge, o protocolo de nível de aplicação projetado. Em particular, a unidade de controlo mestre deve processar e atribuir prioridades às mensagens recebidas da estacão base, solicitar dados à unidade de controlo escrava e difundir mensagens com informação de posição e condições de vento e água no modo de regata. Enquanto que a comunicação entre a unidade de controlo mestre e a estacão base e a unidade de controlo mestre e os barcos é sem fios, a unidade de controlo mestre e a unidade de controlo escrava comunicam através de uma ligação série. A bóia tem atualmente duas limitações: (i) a carga máxima é de 40 kg; e (ii) apenas pode ser utilizada em rios ou próximo da costa dada à limitação de distância imposta pela técnica de comunicação sem fios escolhida.
Resumo:
Univariate statistical control charts, such as the Shewhart chart, do not satisfy the requirements for process monitoring on a high volume automated fuel cell manufacturing line. This is because of the number of variables that require monitoring. The risk of elevated false alarms, due to the nature of the process being high volume, can present problems if univariate methods are used. Multivariate statistical methods are discussed as an alternative for process monitoring and control. The research presented is conducted on a manufacturing line which evaluates the performance of a fuel cell. It has three stages of production assembly that contribute to the final end product performance. The product performance is assessed by power and energy measurements, taken at various time points throughout the discharge testing of the fuel cell. The literature review performed on these multivariate techniques are evaluated using individual and batch observations. Modern techniques using multivariate control charts on Hotellings T2 are compared to other multivariate methods, such as Principal Components Analysis (PCA). The latter, PCA, was identified as the most suitable method. Control charts such as, scores, T2 and DModX charts, are constructed from the PCA model. Diagnostic procedures, using Contribution plots, for out of control points that are detected using these control charts, are also discussed. These plots enable the investigator to perform root cause analysis. Multivariate batch techniques are compared to individual observations typically seen on continuous processes. Recommendations, for the introduction of multivariate techniques that would be appropriate for most high volume processes, are also covered.
Multimodel inference and multimodel averaging in empirical modeling of occupational exposure levels.
Resumo:
Empirical modeling of exposure levels has been popular for identifying exposure determinants in occupational hygiene. Traditional data-driven methods used to choose a model on which to base inferences have typically not accounted for the uncertainty linked to the process of selecting the final model. Several new approaches propose making statistical inferences from a set of plausible models rather than from a single model regarded as 'best'. This paper introduces the multimodel averaging approach described in the monograph by Burnham and Anderson. In their approach, a set of plausible models are defined a priori by taking into account the sample size and previous knowledge of variables influent on exposure levels. The Akaike information criterion is then calculated to evaluate the relative support of the data for each model, expressed as Akaike weight, to be interpreted as the probability of the model being the best approximating model given the model set. The model weights can then be used to rank models, quantify the evidence favoring one over another, perform multimodel prediction, estimate the relative influence of the potential predictors and estimate multimodel-averaged effects of determinants. The whole approach is illustrated with the analysis of a data set of 1500 volatile organic compound exposure levels collected by the Institute for work and health (Lausanne, Switzerland) over 20 years, each concentration having been divided by the relevant Swiss occupational exposure limit and log-transformed before analysis. Multimodel inference represents a promising procedure for modeling exposure levels that incorporates the notion that several models can be supported by the data and permits to evaluate to a certain extent model selection uncertainty, which is seldom mentioned in current practice.
Resumo:
Objective Biomonitoring of solvents using the unchanged substance in urine as exposure indicator is still relatively scarce due to some discrepancies between the results reported in the literature. Based on the assessment of toluene exposure, the aim of this work was to evaluate the effects of some steps likely to bias the results and to measure urinary toluene both in volunteers experimentally exposed and in workers of rotogravure factories. Methods Static headspace was used for toluene analysis. o-Cresol was also measured for comparison. Urine collection, storage and conservation conditions were studied to evaluate possible loss or contamination of toluene in controlled situations applied to six volunteers in an exposure chamber according to four scenarios with exposure at stable levels from 10 to 50 ppm. Kinetics of elimination of toluene were determined over 24 h. A field study was then carried out in a total of 29 workers from two rotogravure printing facilities. Results Potential contamination during urine collection in the field is confirmed to be a real problem but technical precautions for sampling, storage and analysis can be easily followed to control the situation. In the volunteers at rest, urinary toluene showed a rapid increase after 2 h with a steady level after about 3 h. At 47.1 ppm the mean cumulated excretion was about 0.005% of the amount of the toluene ventilated. Correlation between the toluene levels in air and in end of exposure urinary sample was excellent (r = 0.965). In the field study, the median personal exposure to toluene was 32 ppm (range 3.6-148). According to the correlations between environmental and biological monitoring data, the post-shift urinary toluene (r = 0.921) and o-cresol (r = 0.873) concentrations were, respectively, 75.6 mu g/l and 0.76 mg/g creatinine for 50 ppm toluene personal exposure. The corresponding urinary toluene concentration before the next shift was 11 mu g/l (r = 0.883). Conclusion Urinary toluene was shown once more time a very interesting surrogate to o-cresol and could be recommended as a biomarker of choice for solvent exposure. [Authors]
Resumo:
The number of physical activity measures and indexes used in the human literature is large and may result in some difficulty for the average investigator to choose the most appropriate measure. Accordingly, this review is intended to provide information on the utility and limitations of the various measures. Its primary focus is the objective assessment of free-living physical activity in humans based on physiological and biomechanical methods. The physical activity measures have been classified into three categories: Measures based on energy expenditure or oxygen uptake, such as activity energy expenditure, activity-related time equivalent, physical activity level, physical activity ratio, metabolic equivalent, and a new index of potential interest, daytime physical activity level. Measures based on heart rate monitoring, such as net heart rate, physical activity ratio heart rate, physical activity level heart rate, activity-related time equivalent, and daytime physical activity level heart rate. Measures based on whole-body accelerometry (counts/U time). Quantification of the velocity and duration of displacement in outdoor conditions by satellites using the Differential Global Positioning System may constitute a surrogate for physical activity, because walking is the primary activity of man in free-living conditions. A general outline of the measures and indexes described above is presented in tabular form, along with their respective definition, usual applications, advantages, and shortcomings. A practical example is given with typical values in obese and non-obese subjects. The various factors to be considered in the selection of physical activity methods include experimental goals, sample size, budget, cultural and social/environmental factors, physical burden for the subject, and statistical factors, such as accuracy and precision. It is concluded that no single current technique is able to quantify all aspects of physical activity under free-living conditions, requiring the use of complementary methods. In the future, physical activity sensors, which are of low-cost, small-sized, and convenient for subjects, investigators, and clinicians, are needed to reliably monitor, during extended periods in free-living situations, small changes in movements and grade as well as duration and intensity of typical physical activities.
Resumo:
Stable carbon and oxygen isotope analyses were conducted on pedogenic needle fibre calcite (NFC) from seven sites in areas with roughly similar temperate climates in Western Europe, including the Swiss Jura Mountains, eastern and southern France, northern Wales, and north-eastern Spain. The δ(13)C values (-12.5 to-6.8 0/00 Vienna Pee Dee Belemnite (VPDB)) record the predominant C(3) vegetation cover at the sites. A good correlation was found between mean monthly climatic parameters (air temperature, number of frost days, humidity, and precipitation) and δ(18)O values (-7.8 to-3.40/00 VPDB) of all the NFC. Similar seasonal variations of δ(18)O values for monthly NFC samples from the Swiss sites and those of mean monthly δ(18)O values of local precipitation and meteorological data point out precipitation and preferential growth/or recrystallisation of the pedogenic needle calcite during dry seasons. These covariations indicate the potential of stable isotope compositions of preserved NFC in fossil soil horizons as a promising tool for palaeoenvironmental reconstructions.